The reliability of the flip chip package is strongly influenced by underfill, which has a much higher coefficient of thermal expansion (CTE) compared with other packaging materials and leads to large thermomechanical stresses developed during the assembly processes. Thermal expansion mismatch between different materials causes interface delamination between epoxy molding compound and silicon die as well as interface delamination between underfill and silicon die. The main objective of this study is to investigate the effects of underfill material properties, fillet height, and silicon die thickness on the interface delamination between epoxy molding compound and silicon die during a lead-free solder reflow process based on the modified virtual crack closure method. Based on finite element analysis and experiment study, it can be concluded that the energy release rates at reflow temperature are the suitable criteria for the estimation of interface delamination. Furthermore, it is found that underfill material properties (elastic modulus, CTE, and chemical cure shrinkage), fillet height, and silicon die thickness can be optimized to reduce the risk of interface delamination between epoxy molding compound and silicon die in the flip chip ball grid array package.

1.
Rahim
,
K.
,
Suhling
,
J.
,
Jager
,
R.
, and
Lall
,
P.
, 2005, “
Fundamentals of Delamination Initiation and Growth in Flip Chip Assemblies
,”
55th ECTC
, pp.
1172
1186
.
2.
Ferguson
,
T.
, and
Qu
,
J.
, 2002, “
Effect of Moisture on the Interfacial Adhesion of the Underfill/Solder Mask Interface
,”
ASME J. Electron. Packag.
1043-7398,
124
, pp.
106
110
.
3.
Tran
,
S. K.
,
Questad
,
D. L.
, and
Sammakia
,
B. G.
, 1999, “
Adhesion Issues in Flip-Chip on Organic Modules
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
(
4
), pp.
519
524
.
4.
Zhai
,
C. J.
,
Sidharth
,
B.
,
Blish
,
R. C.
, II
, and
Master
,
R. N.
, 2004, “
Investigation and Minimization of Underfill Delamination in Flip Chip Packages
,”
IEEE Trans. Device Mater. Reliab.
1530-4388,
4
(
1
), pp.
86
91
.
5.
Erdogan
,
F.
, 1963, “
Stress Distribution in a Nonhomogeneous Elastic Plane With Cracks
,”
ASME J. Appl. Mech.
0021-8936,
30
, pp.
232
236
.
6.
Park
,
Y. B.
, and
Yu
,
J.
, 1997, “
A Fracture Mechanics Analysis of the Popcorn Cracking in the Plastic IC Packages
,”
21th IEMT
, pp.
12
19
.
7.
Hu
,
G. J.
,
Luan
,
J. E.
,
Baraton
,
X.
, and
Tay
,
A. A. O.
, 2009, “
Analysis of Interfacial Delamination in IC Packaging: Stress or Fracture Mechanics?
,”
11th EPTC Conference
, pp.
584
590
.
8.
Ramamurthy
,
T. S.
,
Krlshnamurthy
,
T.
, and
Badari Narayana
,
K.
, 1986, “
Modified Crack Closure Integral Method With Quarter Point Elements
,”
Mech. Res. Commun.
0093-6413,
13
, pp.
179
186
.
9.
Raju
,
I. S.
, 1987, “
Calculation of Strain-Energy Release Rates With Higher Order and Singular Finite Elements
,”
Eng. Fract. Mech.
0013-7944,
28
, pp.
251
274
.
10.
Sun
,
C. T.
, and
Jih
,
C. J.
, 1987, “
On the Strain Energy Release Rates for Interfacial Cracks in Bi-Material Media
,”
Eng. Fract. Mech.
0013-7944,
28
, pp.
13
20
.
11.
Raju
,
I. S.
,
Crews
,
J. H.
, and
Aminpour
,
M. A.
, 1988, “
Convergence of Strain Energy Release Rate Components for Edge-Delaminated Composite Laminates
,”
Eng. Fract. Mech.
0013-7944,
30
, pp.
383
396
.
12.
Ryoji
,
Y.
, and
Sang-Bong
,
C.
, 1989, “
Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials
,”
Eng. Fract. Mech.
0013-7944,
34
, pp.
179
188
.
13.
Rice
,
J. R.
, 1988, “
Elastic Fracture Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
98
103
.
14.
Hu
,
G. J.
, and
Tay
,
A. A. O.
, 2005, “
Application of Modified Virtual Crack Closure Method on Delamination Analysis in a Plastic IC Package During Lead-Free Solder Reflow
,”
Seventh EPTC Conference
, pp.
555
560
.
15.
Rice
,
J. R.
, and
Sih
,
G. C.
, 1965, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
418
423
.
16.
Yi
,
S.
, and
Sze
,
K. Y.
, 1998, “
Cooling Rate Effect on Post Cure Stresses in Molded Plastic IC Packages
,”
ASME J. Electron. Packag.
1043-7398,
120
, pp.
385
390
.
17.
van Driel
,
W. D.
,
Janssen
,
J. H. J.
,
Zhang
,
G. Q.
,
Yang
,
D. G.
, and
Ernst
,
L. J.
, 2003, “
Packaging Induced Die Stresses-Effect of Chip Anisotropy and Time-Dependent Behaviour of a Moulding Compound
,”
ASME J. Electron. Packag.
1043-7398,
125
(
4
), pp.
520
526
.
18.
Kelly
,
G.
,
Lyden
,
C.
,
Lawton
,
W.
, and
Barrett
,
J.
, 1994, “
Accurate Prediction of PQFP Warpage
,”
44th ECTC Conference
, pp.
102
106
.
19.
Hu
,
G. J.
,
Luan
,
J. E.
, and
Chew
,
S.
, 2009, “
Characterization of Chemical Cure Shrinkage of Epoxy Molding Compound With Application to Warpage Analysis
,”
ASME J. Electron. Packag.
1043-7398,
131
, p.
011010
.
20.
Nairn
,
J. A.
, and
Zoller
,
P.
, 1985, “
Matrix Solidification and the Resulting Residual Thermal Stresses in Composites
,”
J. Mater. Sci.
0022-2461,
20
, pp.
355
367
.
21.
ASTM
, “
Standard Test Method for Linear Shrinkage of Cured Thermosetting Casting Resins During Cure, ASTM D2566-79
.”
22.
Li
,
C.
,
Potter
,
K.
,
Wisnom
,
M. R.
, and
Stringer
,
G.
, 2004, “
In-Situ Measurement of Chemical Shrinkage of MY750 Epoxy Resin by a Novel Gravimetric Method
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
55
64
.
23.
Hu
,
G. J.
,
Tay
,
A. A. O.
,
Zhang
,
Y. W.
,
Zhu
,
W. H.
, and
Chew
,
S.
, 2006, “
Material Characterization of Viscoelastic Molding Compound With Application to Delamination Analysis in IC Package
,”
Eighth EPTC Conference
, pp.
98
104
.
24.
Ernst
,
L. J.
,
Zhang
,
G. Q.
,
Jansen
,
K. M. B.
, and
Bressers
,
H. J. L.
, 2003, “
Time- and Temperature-Dependent Thermo-Mechanical Modeling of a Packaging Molding Compound and Its Effect on Packaging Process Stresses
,”
ASME J. Electron. Packag.
1043-7398,
125
(
4
), pp.
539
548
.
25.
Wang
,
J. S.
, and
Suo
,
Z.
, 1990, “
Experimental Determination of Interfacial Toughness Curves Using Brazil-Nut-Sandwiches
,”
Acta Metall. Mater.
0956-7151,
38
, pp.
1279
1290
.
You do not currently have access to this content.