Flow boiling in microchannels has been investigated extensively over the past decade for electronics cooling applications; however, the implementation of microchannel heat sinks operating in the two-phase regime in practical applications has lagged due to the complexity of boiling phenomena at the microscale. This has led to difficulties in predicting the heat transfer rates that can be achieved as a function of the governing parameters. From extensive experimental work and analysis performed in recent years, a clear picture has emerged that promises to enable prediction of flow boiling heat transfer over a wide parameter space. Experiments have been conducted to determine the effects of important geometric parameters such as channel width, depth, and cross-sectional area, operating conditions such as mass flux, heat flux, and vapor quality, as well as fluid properties, on flow regimes, heat transfer coefficients, and pressure drops in microchannels. A detailed mapping of flow regimes occurring under different conditions has been facilitated with high-speed flow visualizations. In addition, quantitative criteria for the transition between macro- and microscale boiling behaviors have been identified. In this paper, these recent advances toward a comprehensive understanding of flow boiling in microchannels are summarized.

1.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
, 2003, “
Transport in Microchannels—A Critical Review
,”
Ann. Rev. Heat Transfer
,
13
, pp.
1
50
.
2.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
5
, pp.
293
311
.f
3.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
12
, pp.
187
227
.
4.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2009, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2110
2118
.
5.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4775
4787
.
6.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2009, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
142
154
.
7.
Liu
,
D.
, and
Garimella
,
S. V.
, 2007, “
Flow Boiling Heat Transfer in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
(
10
), pp.
1321
1332
.
8.
Lee
,
P. S.
, and
Garimella
,
S. V.
, 2008, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
789
806
.
9.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2008, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3724
3735
.
10.
Chen
,
T.
, and
Garimella
,
S. V.
, 2006, “
Effect of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
128
(
4
), pp.
398
404
.
11.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2009, “
The Critical Role of Channel Cross-Sectional Area in Microchannel Flow Boiling Heat Transfer
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
904
913
.
12.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2009, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
349
362
.
13.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
, 2009, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
121009
.
14.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2010, “
A Comprehensive Flow Regime Map for Microchannel Flow Boiling With Quantitative Transition Criteria
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
2694
2702
.
15.
Chen
,
T.
, and
Garimella
,
S. V.
, 2006, “
Measurements and High-Speed Visualization of Flow Boiling of a Dielectric Fluid in a Silicon Microchannel Heat Sink
,”
Int. J. Multiphase Flow
0301-9322,
32
(
8
), pp.
957
971
.
16.
Chen
,
T.
, and
Garimella
,
S. V.
, 2007, “
Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
1
), pp.
24
31
.
17.
Jones
,
B. J.
, and
Garimella
,
S. V.
, 2009, “
Surface Roughness Effects on Flow Boiling in Microchannels
,”
Proceedings of the ASME InterPACK ‘09
, San Francisco, CA, Jul. 19–23.
19.
Harirchian
,
T.
, 2010, “
Two-Phase Flow and Heat Transfer in Microchannels
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
20.
Taylor
,
J. R.
, 1997,
An Introduction to Error Analysis
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
21.
Liu
,
D.
, and
Garimella
,
S. V.
, 2004, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
1
), pp.
65
72
.
22.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1688
1704
.
23.
Holcomb
,
B. T.
,
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2009, “
An Experimental Investigation of Microchannel Size Effects on Flow Boiling With De-Ionized Water
,”
Proceedings of the ASME Summer Heat Transfer Conference, HT2009
, San Francisco, CA, Jul. 19–23.
24.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2007, “
Microchannel Size Effects on Two-Phase Local Heat Transfer and Pressure Drop in Silicon Microchannel Heat Sinks With a Dielectric Fluid
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, IMECE2007
, Vol.
11
, Pt. A, pp.
437
446
.
25.
Zhang
,
H. Y.
,
Pinjala
,
D.
, and
Wong
,
T. N.
, 2005, “
Experimental Characterization of Flow Boiling Heat Dissipation in a Microchannel Heat Sink With Different Orientations
,”
Proceedings of the Seventh Electronics Packaging Technology Conference, EPTC 2
, pp.
670
676
.
26.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Forced Convection Boiling in a Microchannel Heat Sink
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
80
87
.
27.
Geisler
,
K. J. L.
, and
Bar-Cohen
,
A.
, 2009, “
Confinement Effects on Nucleate Boiling and Critical Heat Flux in Buoyancy-Driven Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
11–12
), pp.
2427
2436
.
28.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
, 2002, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
53
64
.
29.
Pate
,
D. P.
,
Jones
,
R. J.
, and
Bhavnani
,
S. H.
, 2006, “
Cavity-Induced Two-Phase Heat Transfer in Silicon Microchannels
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena and Emerging Technologies in Electronic Systems
, pp.
71
78
.
30.
Harirchian
,
T.
, and
Garimella
,
S. V.
, “
Flow Regime-Based Modeling of Heat Transfer and Pressure Drop in Microchannel Flow Boiling
,”
Int. J. Multiphase Flow
0301-9322, in review.
31.
Cooper
,
M. G.
, 1984, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
0065-2717,
16
, pp.
157
239
.
32.
Gorenflo
,
D.
, 1993,
VDI Heat Atlas
,
VDI-Verlag
,
Dusseldorf
, Chap. Ha.
33.
Chen
,
J. C.
, 1966, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
5
(
3
), pp.
322
329
.
34.
Shah
,
M. M.
, 1977, “
General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli
,”
ASHRAE Trans.
0001-2505,
83
(
1
), pp.
202
217
.
35.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
, 1986, “
General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
3
), pp.
351
358
.
36.
Tran
,
T. N.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
, 1996, “
Small Circular- and Rectangular-Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
0301-9322,
22
(
3
), pp.
485
498
.
37.
Zhang
,
W.
,
Hibiki
,
T.
, and
Mishima
,
K.
, 2004, “
Correlation for Flow Boiling Heat Transfer in Mini-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
26
), pp.
5749
5763
.
38.
Peters
,
J. V. S.
, and
Kandlikar
,
S. G.
, 2007, “
Further Evaluation of a Flow Boiling Correlation for Microchannels and Minichannels
,”
Proceedings of the Fifth International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
, Puebla, Mexico, June 18–20.
39.
Baker
,
O.
, 1954, “
Design of Pipe Lines for Simultaneous Flow of Oil and Gas
,”
Oil & Gas J.
,
53
, pp.
185
195
.
40.
Hewitt
,
G. F.
, and
Robert
,
D. N.
, 1969, “
Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography
,” HMSO, Report No. AERE-M 2159.
41.
Taitel
,
Y.
, and
Dukler
,
A. E.
, 1976, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
0001-1541,
22
, pp.
47
55
.
42.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2003, “
Two-Phase Flow Patterns in Parallel Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
341
360
.
43.
Huo
,
X.
,
Chen
,
L.
,
Tian
,
Y. S.
, and
Karayiannis
,
T. G.
, 2004, “
Flow Boiling and Flow Regimes in Small Diameter Tubes
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
1225
1239
.
44.
Revellin
,
R.
,
Dupont
,
V.
,
Ursenbacher
,
T.
,
Thome
,
J. R.
, and
Zun
,
I.
, 2006, “
Characterization of Diabatic Two-Phase Flows in Microchannels: Flow Parameter Results for R-134a in a 0.5 mm Channel
,”
Int. J. Multiphase Flow
0301-9322,
32
, pp.
755
774
.
45.
Chung
,
P. M.-Y.
, and
Kawaji
,
M.
, 2004, “
The Effect of Channel Diameter on Adiabatic Two-Phase Flow Characteristics in Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
30
(
7–8
), pp.
735
761
.
46.
Hassan
,
I.
,
Vaillancourt
,
M.
, and
Pehlivan
,
K.
, 2005, “
Two-Phase Flow Regime Transitions in Microchannels: A Comparative Experimental Study
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
9
, pp.
165
182
.
47.
Field
,
B.
, and
Hrnjak
,
P.
, 2007, “
Visualization of Two-Phase Refrigerant and Refrigerant-Oil Flow in a Microchannel
,”
ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA, Paper No. IMECE2007-43471.
You do not currently have access to this content.