The work presented in this paper describes a simplified thermodynamic model that can be used for exploring optimization possibilities in air-cooled data centers. The model is used to evaluate parametrically the total energy consumption of the data center cooling infrastructure for data centers that utilize aisle containment. The analysis highlights the importance of reducing the total power required for moving the air within the computer room air conditioners (CRACs), the plenum, and the servers, rather than focusing primarily or exclusively on reducing the refrigeration system’s power consumption. In addition, the benefits of introducing a bypass recirculation branch in enclosed aisle configurations are shown. The analysis shows a potential for as much as a 60% savings in cooling infrastructure energy consumption by utilizing an optimized enclosed aisle configuration with bypass recirculation, instead of a traditional enclosed aisle in which all the data center exhaust is forced to flow through the CRACs. Furthermore, computational fluid dynamics is used to evaluate practical arrangements for implementing bypass recirculation in raised floor data centers. A configuration where bypass tiles, with controllable low-lift fans, are placed close to the discharge of CRACs results in increased mixing and is shown to be a suitable method for providing nearly thermally uniform conditions to the inlet of the servers in an enclosed cold aisle. Other configurations of bypass implementation are also discussed and explored.

References

1.
Salim
,
M.
, and
Tozer
,
R.
, 2010, “
Data Centers’ Energy Auditing and Benchmarking-Progress Update
,”
ASHRAE Trans.
,
116
(
1
), pp.
109
117
.
2.
United States Environmental Protection Agency, 2007, “
Report to Congress on Data Center Energy Efficiency
,” Public Law
109
431
.
3.
ASHRAE
, 2008,
Best Practices for Datacom Facility Energy Efficiency
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
4.
Lui
,
Y.
, 2010, “
Waterside and Airside Economizers Design Considerations for Data Center Facilities
,”
ASHRAE Trans.
,
116
(
1
), pp.
98
108
.
5.
Schmidt
,
R.
, 2004, “
Thermal Profile of a High-Density Data Center—Methodology to Thermally Characterize a Data Center
,”
ASHRAE Trans.
,
110
(
2
), pp.
635
642
.
6.
Schmidt
,
R.
,
Cruz
,
E.
, and
Iyengar
,
M.
, 2005, “
Challenges of Data Center Thermal Management
,”
IBM J. Res. Develop.
,
49
, pp.
709
723
.
7.
ASHRAE
, 2008,
High Density Data Centers: Case Studies and Best Practices
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
8.
Shrivastava
,
S.
,
Iyengar
,
M.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Vangilder
,
J.
, 2006, “
Experimental-Numerical Comparison for a High Density Data Center: Hot Spot Heat Fluxes in Excess of 500 W/ft2
,”
Proceedings of IEEE ITHERM 2006
,
San Diego, CA
.
9.
Patel
,
C.
,
Bash
,
C.
,
Belady
,
L.
,
Stahl
,
L.
, and
Sullivan
,
D.
, 2001, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Specifications
,”
Proceedings of ASME InterPACK
2001,
Kauai
,
Hawaii
.
10.
Patel
,
C.
,
Sharma
,
C.
,
Bash
,
C.
, and
Beitelmal
,
A.
, 2002, “
Thermal Considerations in Cooling Large Scale High Compute Density Data Centers
,”
Proceedings of Inter-Society Conference of Thermal Phenomena
, pp.
767
776
.
11.
Shah
,
A.
,
Carey
,
V.
,
Bash
,
C.
, and
Patel
,
C.
, 2008, “
Exergy Analysis of Data Center Thermal Management
,”
J. Heat Transfer
,
130
, pp.
021401
10
.
12.
Bash
,
C.
,
Patel
,
C.
, and
Sharma
,
R.
, 2006, “
Dynamic Thermal Management of Air Cooled Data Centers
,”
Proceedings of ITHERM
, San Diego, CA.
13.
Boucher
,
T.
,
Auslander
,
D.
,
Bash
,
C.
,
Federspiel
,
C.
, and
Patel
,
C.
, 2004, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
Presented at IEEE ITHERM 2004
, Las Vegas, NV.
14.
Zhang
,
X.
,
VanGilder
,
J.
, and
Healey
,
C.
, 2009, “
A Real-Time Data Center Airflow and Energy Assessment Tool
,”
Proceedings of InterPACK
, San Francisco, CA.
15.
Iyengar
,
M.
,
Schmidt
,
R.
, and
Caricari
,
J.
, 2010, “
Reducing Energy Usage in Data Centers Through Control of Room Air Conditions Units
,”
Proceedings of ITHERM
, Las Vegas, NV.
16.
Iyengar
,
M.
, and
Schmidt
,
R.
, 2007, “
Analytical Modeling of Thermodynamic Characterization of Data Center Cooling Systems
,”
ASME J. Electron. Packag.
,
131
,
021011
.
17.
Pelley
,
S.
,
Meisner
,
D.
,
Wenisch
,
T.
, and
VanGilder
,
J.
, 2009, “
Understanding and Abstracting Total Data Center Power
,” Proceedings of the 2009 Workshop on Energy Efficient Design (WEED).
18.
Hellmer
,
B.
, 2010, “
Consumption Analysis of Teleco and Data Center Cooling and Humidification Options
,”
ASHRAE Trans.
,
116
(
1
), pp.
118
133
.
19.
Demetriou
,
D. W.
,
Khalifa
,
H. E.
,
Schmidt
,
R.
, and
Iyengar
,
M.
, 2011, “
Development and Validation of a Coupled Thermo-Hydraulic Model for Evaluating Data Center Energy Use
,” HVAC&R Res.,
17
(4), pp.
540
555
.
20.
Walsh
,
E.
,
Breen
,
T.
,
Punch
,
J.
,
Shah
,
A.
, and
Bash
,
C.
, 2010, “
From Chip to Cooling Tower Data Center Modeling: Part I Influence of Server Inlet Temperature and Temperature Rise Across Cabinet
,”
Proceedings of IEEE ITHERM
, Las Vegas, NV.
21.
Walsh
,
E.
,
Breen
,
T.
,
Punch
,
J.
,
Shah
,
A.
, and
Bash
,
C.
, 2010, “
From Chip to Cooling Tower Data Center Modeling: Part II Influence of Chip Temperature Control Philosophy
,”
Proceedings of IEEE ITHERM
, Las Vegas, NV.
22.
Bejan
,
A.
, and
Ledezma
,
G. A.
, 1996, “
Thermodynamic Optimization of Cooling Techniques for Electronic Packages
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1213
1221
.
23.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
24.
Bejan
,
A.
, 1995,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
25.
Lawrence Berkeley National Labs, 2007, “
Benchmarking: Data Centers-Charts
,” http://hightech.lbl.gov/benchmarking-dc-charts.html
26.
ASHRAE
, 2000,
HVAC Systems and Equipment
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
27.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Moore
,
J.
,
Chase
,
J.
,
Ranganathan
,
P.
, and Sharma, R, 2005, “
Making Scheduling ‘Cool’: Temperature-Aware Workload Placement in Data Centers
,”
Proceedings of the 2005 USENIX Annual Technical Conference
, pp.
61
74
.
29.
Tang
,
Q.
,
Gupta
,
S.
, and Varsamopoulos, G., 2007, “
Thermal-Aware Task Scheduling for Data Centers Through Minimizing Heat Recirculation
,”
Proceedings of IEEE Cluster
.
30.
Khalifa
,
H. E.
, and
Demetriou
,
D. W.
, 2010, U.S. Provisional Patent No. 61,367,931 (filing date July 21, 2010).
31.
Tang
,
Q.
,
Gupta
,
S.
, and
Varsamopoulos
,
G.
, 2008, “
Energy-Efficient Thermal Aware Task Scheduling for Homogenous High-Performance Computing Data Centers: A Cyber-Physical Approach
,”
IEEE Trans. Parallel Distrib. Syst.
,
19
(
11
), pp.
1458
1472
.
32.
Khalifa
,
H. E.
, and
Demetriou
,
D. W.
, 2011, “
Energy Optimization of Air-Cooled Data Centers
,”
J. Thermal Sci. Eng. Appl.
,
2
,
041005
.
33.
VanGilder
,
J.
, and
Zhang
,
X.
, 2008, “
Coarse-Grid CFD: The Effect of Grid Size on Data Center Modeling
,”
ASHRAE Trans.
,
114
(2), pp.
166
181
.
34.
ASHRAE
, 2009,
Fundamentals Handbook
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
35.
Marion
,
W.
, and
Urban
,
K.
, 1995, “
User’s Manual for TMY2s: Typical Meteorological Year
,” National Renewable Energy Laboratory (NREL).
You do not currently have access to this content.