Thermoelectric (TE) modules utilize available temperature differences to generate electricity by the Seebeck effect. The current study investigates the merits of employing thermoelectrics to harvest additional electric energy instead of just cooling concentrating photovoltaic (CPV) modules by heat sinks (heat extractors). One of the attractive options to convert solar energy into electricity efficiently is to laminate TE modules between CPV modules and heat extractors to form a CPV-TE/thermal (CPV-TE/T) hybrid system. In order to perform an accurate estimation of the additional electrical energy harvested, a coupled-field model is developed to calculate the electrical performance of TE devices, which incorporates a rigorous interfacial energy balance including the Seebeck effect, the Peltier effect, and Joule heating, and results in better predictions of the conversion capability. Moreover, a 3D multiphysics computational model for the HCPV-TE/T water collector system consisting of a solar concentrator, 10 serially connected GaAs/Ge photovoltaic (PV) cells, 300 couples of bismuth telluride TE modules, and a cooling channel with heat-recovery capability, is implemented by using the commercial FE–tool Comsol Multiphysics®. A conjugate heat transfer model is used, assuming laminar flow through the cooling channel. The performance and efficiencies of the hybrid system are analyzed. As compared with the traditional photovoltaic/thermal (PV/T) system, a comparable thermal efficiency and a higher 8% increase of the electrical efficiency can be observed through the PV-TE hybrid system. Additionally, with the identical convective surface area and cooling flow rate in both configurations, the PV-TE/T hybrid system yields higher PV cell temperatures but more uniform temperature distributions across the cell array, which thus eliminates the current matching problem; however, the higher cell temperatures lower the PV module's fatigue life, which has become one of the biggest challenges in the PV-TE hybrid system.

References

1.
Radziemska
,
E.
,
2003
, “
The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells
,”
J. Renewable Energy
,
28
(
1
), pp.
1
12
.10.1016/S0960-1481(02)00015-0
2.
Xu
,
X.
,
Meyers
,
M. M.
,
Sammakia
,
B. G.
, and
Murray
,
B. T.
,
2013
, “
Thermal Modeling and Life Prediction of Water-Cooled Hybrid Concentrating PVT Collectors
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011010
.10.1115/1.4006965
3.
O'Leary
,
M. J.
, and
Clements
,
L. D.
,
1980
, “
Thermal–Electric Performance Analysis for Actively Cooled, Concentrating Photovoltaic Systems
,”
Sol. Energy
,
25
(
5
), pp.
401
406
.10.1016/0038-092X(80)90446-6
4.
Mbewe
,
D. J.
,
Card
,
H. C.
, and
Card
,
D. C.
,
1985
, “
A Model of Silicon Solar Cells for Concentrator Photovoltaic and Photovoltaic/Thermal System Design
,”
Sol. Energy
,
35
(
3
), pp.
247
258
.10.1016/0038-092X(85)90104-5
5.
Garg
,
H. P.
, and
Adhikari
,
R. S.
,
1999
, “
Performance Analysis of a Hybrid Photovoltaic/Thermal (PV/T) Collector With Integrated CPC Troughs
,”
Int. J. Energy Res.
,
23
(
15
), pp.
1295
1304
.10.1002/(SICI)1099-114X(199912)23:15<1295::AID-ER553>3.0.CO;2-T
6.
Akbarzadeh
,
A.
, and
Wadowski
,
T.
,
1996
, “
Heat Pipe-Based Cooling Systems for Photovoltaic Cells Under Concentrated Solar Radiation
,”
Appl. Therm. Eng.
,
16
(
1
), pp.
81
87
.10.1016/1359-4311(95)00012-3
7.
Brogren
,
M.
, and
Karlsson
,
B.
,
2001
, “
Low-Concentrating Water-Cooled PV–Thermal Hybrid Systems for High Latitudes
,”
Twenty-Ninth IEEE Photovoltaic Specialists Conference
, New Orleans, LA, May 19–24, pp.
1733
1736
.10.1109/PVSC.2002.1190956
8.
Coventry
,
J. S.
,
2005
, “
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
(
2
), pp.
211
222
.10.1016/j.solener.2004.03.014
9.
Chen
,
J. C.
,
1996
, “
Thermodynamic Analysis of a Solar-Driven Thermoelectric Generator
,”
J. Appl. Phys
,
79
(
5
), pp.
2717
2721
.10.1063/1.361143
10.
Gunter
,
R.
,
Roland
,
S.
,
Lars
,
P.
, and
Bernd
,
L.
,
1999
, “
PV-Hybrid and Thermoelectric Collectors
,”
Sol. Energy
,
67
(
4–6
), pp.
227
237
.10.1016/S0038-092X(00)00075-X
11.
Omer
,
S. A.
, and
Infield
,
D. G.
,
1998
, “
Design Optimization of Thermoelectric Devices for Solar Power Generation
,”
Sol. Energy Mater. Sol. Cells
,
53
(
1–2
), pp.
67
82
.10.1016/S0927-0248(98)00008-7
12.
Maneewan
,
S.
,
Hirrunlabh
,
J.
,
Khedari
,
J.
,
Zeghmati
,
B.
, and
Teekasap
,
S.
,
2005
, “
Heat Gain Reduction by Means of Thermoelectric Roof Solar Collector
,”
Sol. Energy
,
78
(
4
), pp.
495
503
.10.1016/j.solener.2004.08.003
13.
Lertsatitthanakorn
,
C.
,
Khasee
,
N.
,
Atthajariyakul
,
S.
,
Soponronnarit
,
S.
,
Therdyothin
,
A.
, and
Suzuki
,
R. O.
,
2008
, “
Performance Analysis of a Double-Pass Thermoelectric Solar Air Collector
,”
Sol. Energy Mater. Sol. Cells
,
92
(
9
), pp.
1105
1109
.10.1016/j.solmat.2008.03.018
14.
Peng
,
L.
,
Lanlan
,
C.
,
Pengcheng
,
Z.
,
Xinfeng
,
T.
,
Qingjie
,
Z.
, and
Niino
,
M.
,
2010
, “
Design of a Concentration Solar Thermoelectric Generator
,”
J. Electron. Mater
,
39
(
9
), pp.
1522
1530
.10.1007/s11664-010-1279-0
15.
COMSOL,
2008
, COMSOL Multiphyiscs, version 4.1, COMSOL, Inc., Burlington, MA.
16.
Spectrolab Solar,
2002
, “
GaAs/Ge Single Junction Solar Cells
,” Spectrolab Inc., Sylmar, CA, http://www.spectrolab.com/DataSheets/SJCell/sj.pdf
17.
The Bergquist,
2014
, “
Thermal Clad Substrate
,” The Bergquist Co., Chanhassen, MN, http://www.bergquistcompany.com/thermal_substrates/t-clad-product-overview.htm
18.
Smolec
,
W.
, and
Thomas
,
A.
,
1993
, “
Theoretical and Experimental Investigations of Heat Transfer in a Trombe Wall
,”
Energy Convers. Manage.
,
34
(
5
), pp.
385
400
.10.1016/0196-8904(93)90089-S
19.
Sarhaddi
,
F.
,
Farahat
,
S.
,
Ajam
,
H.
,
Behzadmehr
,
A.
, and
Adeli
,
M. M.
,
2010
, “
An Improved Thermal and Electrical Model for a Solar Photovoltaic Thermal (PV/T) Air Collector
,”
Appl. Energy
,
87
(
7
), pp.
2328
2339
.10.1016/j.apenergy.2010.01.001
20.
Jaegle
,
M.
,
2008
, “
Multiphysics Simulation of Thermoelectric Systems—Modeling of Peltier-Cooling and Thermoelectric Generation
,”
COMSOL Conference
,
Hannover, Germany
, November 4–6, available at: http://www.comsol.com/paper/download/37149/Jaegle.pdf
21.
Xu
,
X.
,
Sammakia
,
B. G.
,
Murray
,
B. T.
, and
Meyers
,
M. M.
,
2012
, “
Thermal Modeling of Hybrid Concentrating PV/T Collectors With Tree-Shaped Channel Nets Cooling System
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
San Diego, CA
, May 30–June 1, pp.
1131
1138
.10.1109/ITHERM.2012.6231550
22.
Chow
,
T. T.
,
He
,
W.
, and
Ji
,
J.
,
2006
, “
Hybrid Photovoltaic-Thermosyphon Water Heating System for Residential Application
,”
Sol. Energy
,
80
(
3
), pp.
298
306
.10.1016/j.solener.2005.02.003
23.
Rowe
,
D. M.
, ed.,
1995
,
CRC Handbook of Thermoelectrics
,
CRC Press
,
London
.
24.
Topal
,
E. T.
,
2011
, “
A Flow Induced Vertical Thermoelectric Generator and Its Simulation Using COMSOL Multiphysics
,”
COMSOL Conference
,
Boston, MA
, October 13–15, available at: http://www.comsol.com/cd/direct/conf/2012/papers/10899/12049_topal_paper.pdf
25.
Niu
,
X.
, and
Yu
,
J. L.
,
2009
, “
Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator
,”
J. Power Sources
,
188
(
2
), pp.
621
626
.10.1016/j.jpowsour.2008.12.067
26.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O'Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
(
6856
), pp.
597
602
.10.1038/35098012
27.
Yang
,
R. G.
, and
Chen
,
G.
,
2005
, “
Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites
,”
Mater. Integr.
,
18
, pp.
31
36
.
You do not currently have access to this content.