A unified creep plasticity damage (UCPD) model for eutectic Sn-Pb and Pb-free solders was developed and implemented into finite element analysis codes. The new model will be described along with the relationship between the model's damage evolution equation and an empirical Coffin–Manson relationship for solder fatigue. Next, developments needed to model crack initiation and growth in solder joints will be described. Finally, experimentally observed cracks in typical solder joints subjected to thermal mechanical fatigue are compared with model predictions. Finite element based modeling is particularly suited for predicting solder joint fatigue of advanced electronics packaging, e.g. package-on-package (PoP), because it allows for evaluation of a variety of package materials and geometries.

References

1.
Perkins
,
A. E.
, and
Sitaraman
,
S. K.
,
2009
,
Solder Joint Reliability Predictions for Multiple Environments
,
Springer
,
New York
.
2.
Zhang
,
Q.
, and
Dasgupta
,
A.
,
2005
, “
Systematic Study on Thermo-Mechanical Durability of Pb-Free Assemblies: Experiments and FE Analysis
,”
ASME J. Electron. Packag.
,
127
(
4
), pp.
415
429
.10.1115/1.2098812
3.
Darveaux
,
R.
,
2002
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
147
154
.10.1115/1.1413764
4.
Towashiraporn
,
P.
,
Subbarayan
,
G. S.
, and
Desai
,
C. S.
,
2005
, “
A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4468
4483
.10.1016/j.ijsolstr.2004.12.012
5.
Bhate
,
D.
,
Chan
,
D.
,
Subbarayan
,
G.
, and
Nguyen
,
L.
,
2008
, “
A Nonlinear Fracture Mechanics Approach to Modeling Fatigue Crack Growth in Solder Joints
,”
ASME J. Electron. Packag.
,
130
(
2
), p.
021003
.10.1115/1.2840057
6.
Ladani
,
L. J.
, and
Dasgupta
,
A.
,
2008
, “
Damage Initiation and Propagation in Voided Joints: Modeling and Experiment
,”
ASME J. Electron. Packag.
,
130
(
1
), p.
011008
.10.1115/1.2837562
7.
Anand
,
L.
,
1985
, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
3
), pp.
213
231
.10.1016/0749-6419(85)90004-X
8.
Busso
,
E. P.
,
Kitano
,
M.
, and
Kumazawa
,
T.
,
1992
, “
A Visco-Plastic Constitutive Model for 60/40 Tin-Lead Solder Used in IC Package Joints
,”
Trans. ASME J. Eng. Mater. Technol.
,
114
(
3
), pp.
331
337
.10.1115/1.2904181
9.
Frear
,
D. R.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
, and
Stephens
,
J. J.
,
1997
, “
Microstructurally Based Finite Element Simulation of Solder Joint Behaviour
,”
Soldering Surf. Mount Technol.
,
9
(
1
), pp.
39
42
.10.1108/09540919710800601
10.
Nose
,
H.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
,
2003
, “
Temperature and Strain Rate Effects on Tensile Strength and Inelastic Constitutive Relationship of Sn-Pb Solders
,”
ASME J. Electron. Packag.
,
125
(
1
), pp.
59
66
.10.1115/1.1533058
11.
Fossum
,
A. F.
,
Vianco
,
P. T.
,
Neilsen
,
M. K.
, and
Pierce
,
D. M.
,
2006
, “
A Practical Viscoplastic Damage Model for Lead-Free Solder
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
71
81
.10.1115/1.2160514
12.
Ohguchi
,
K. I.
,
Sasaki
,
K.
, and
Ishibashi
,
M.
,
2006
, “
A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys
,”
J. Electron. Mater.
,
35
(
1
), pp.
132
139
.10.1007/s11664-006-0195-9
13.
Sharma
,
P.
, and
Dasgupta
,
A.
,
2002
, “
Micro-Mechanics of Creep-Fatigue Damage in Pb-Sn Solder Due To Thermal Cycling; Part I: Formulation; Part II: Mechanistic Insights and Cyclic Durability Predictions From Monotonic Data
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
292
298
.10.1115/1.1493202
14.
Desai
,
C. S.
,
Basaran
,
C.
,
Dishongh
,
T.
, and
Prince
,
J.
,
1998
, “
Thermomechanical Analysis in Electronic Packaging With Unified Constitutive Models for Materials and Joints
,”
IEEE Trans. Compon. Packag. Manuf. Technol., Part B
,
21
(
1
), pp.
87
97
.10.1109/96.659511
15.
Ladani
,
L.
, and
Dasgupta
,
A.
,
2009
, “
A Meso-Scale Damage Evolution Model for Cyclic Fatigue of Viscoplastic Materials
,”
Int. J. Fatigue
,
31
(
4
), pp.
703
711
.10.1016/j.ijfatigue.2008.03.013
16.
Boyce
,
G. L.
,
Brewer
,
L. N.
,
Neilsen
,
M. K.
, and
Perricone
,
M. J.
,
2011
, “
On the Strain Rate and Temperature Dependent Tensile Behavior of Eutectic Sn-Pb Solder
,”
ASME J. Electron. Packag.
,
133
(
3
),
p. 031009
.10.1115/1.4004846
17.
Solomon
,
H.
,
1986
, “
Fatigue of 60/40 Solder
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
9
(
4
), pp.
423
432
.10.1109/TCHMT.1986.1136672
18.
Cuddalorepatta
,
G.
, and
Dasgupta
,
A.
,
2005
, “
Cyclic Mechanical Durability of Sn3. 0Ag0. 5Cu Pb-Free Solder Alloy
,”
International Mechanical Engineering Congress and Exhibition Paper
,
Orlando, FL
,
ASME
Paper No. IMECE2005-81171.10.1115/IMECE2005-81171
19.
Zhou
,
Y.
,
Al-Bassyiouni
,
M.
, and
Dasgupta
,
A.
,
2009
, “
Vibration Durability Assessment of Sn3.0Ag0.5Cu and Sn37Pb Solders Under Harmonic Excitation
,”
ASME J. Electron. Packag.
,
131
(
1
), p.
011016
.10.1115/1.3078195
20.
Kariya
,
Y.
, and
Otsuka
,
M.
,
1998
, “
Mechanical Fatigue Characteristics of Sn-3.5 Ag-x (x= Bi, Cu, Zn and In) Solder Alloys
,”
J. Electron. Mater.
,
27
(
11
), pp.
1229
1235
.10.1007/s11664-998-0074-7
21.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Kilgo
,
A. C.
,
2003
, “
Time-Independent Mechanical and Physical Properties of the Ternary 95.5 Sn-3.9 Ag-0.6 Cu Solder
,”
J. Electron. Mater.
,
32
(
3
), pp.
142
151
.10.1007/s11664-003-0185-0
22.
More
,
J. J.
,
1978
, “
The Levenberg-Marquardt Algorithm: Implementation and Theory
,”
Biennial Conference on Numerical Analysis
,
Dundee, Scotland
, June 28–July 1, pp.
105
116
.
23.
NASA-DoD Lead-Free Electronics Project Joint Test Report—Final, December 2011, http://teerm.nasa.gov/nasa_dodleadfreeelectronics_proj2.htm
You do not currently have access to this content.