Recent years, semiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting (SSL) and thin-film display applications. The pure and tunable spectra of QDs make it possible to simultaneously achieve excellent color-rendering properties and high luminous efficiency (LE) when combining colloidal QDs with light-emitting diodes (LEDs). Due to its solution-based synthetic route, QDs are impractical for fabrication of LED. QDs have to be incorporated into polymer matrix, and the mixture is dispensed into the LED mold or placed onto the LED to fabricate the QD–LEDs, which is known as the packaging process. In this process, the compatibility of QDs' surface ligands with the polymer matrix should be ensured, otherwise the poor compatibility can lead to agglomeration or surface damage of QDs. Besides, combination of QDs–polymer with LED chip is a key step that converts part of blue light into other wavelengths (WLs) of light, so as to generate white light in the end. Since QD-LEDs consist of three or more kinds of QDs, the spectra distribution should be optimized to achieve a high color-rendering ability. This requires both theoretical spectra optimization and experimental validation. In addition, to prolong the reliability and lifetime of QD-LEDs, QDs have to be protected from oxygen and moisture penetration. And the heat generation inside the package should be well controlled because high temperature results in QDs' thermal quenching, consequently deteriorates QD-LEDs' performance greatly. Overall, QD-LEDs' packaging and applications present the above-mentioned technical challenges. A profound and comprehensive understanding of these problems enables the advancements of QD-LEDs' packaging processes and designs. In this review, we summarized the recent progress in the packaging of QD-LEDs. The wide applications of QD-LEDs in lighting and display were overviewed, followed by the challenges and the corresponding progresses for the QD-LEDs' packaging. This is a domain in which significant progress has been achieved in the last decade, and reporting on these advances will facilitate state-of-the-art QD-LEDs' packaging and application technologies.

References

1.
Kwak
,
J.
,
Bae
,
W. K.
,
Lee
,
D.
,
Park
,
I.
,
Lim
,
J.
,
Park
,
M.
,
Cho
,
H.
,
Woo
,
H.
,
Yoon
,
D. Y.
, and
Char
,
K.
,
2012
, “
Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure
,”
Nano Lett.
,
12
(
5
), pp.
2362
2366
.
2.
Cho
,
J. S.
,
Lee
,
E. K.
,
Joo
,
W. J.
,
Jang
,
E.
,
Kim
,
T. H.
,
Lee
,
S. J.
,
Kwon
,
S. J.
,
Han
,
J. Y.
,
Kim
,
B. K.
, and
Choi
,
B. L.
,
2009
, “
High-Performance Crosslinked Colloidal Quantum-Dot Light-Emitting Diodes
,”
Nat. Photon.
,
3
(
6
), pp.
341
345
.
3.
Zhang
,
Y.
,
Xie
,
C.
,
Su
,
H.
,
Liu
,
J.
,
Pickering
,
S.
,
Wang
,
Y.
,
Yu
,
W.
,
Wang
,
J.
,
Wang
,
Y.
, and
Hahm
,
J.-I.
,
2011
, “
Employing Heavy Metal-Free Colloidal Quantum Dots in Solution-Processed White Light-Emitting Diodes
,”
Nano Lett.
,
11
(
2
), pp.
329
332
.
4.
Xie
,
R.
,
Kolb
,
U.
,
Li
,
J.
,
Basche
,
T.
, and
Mews
,
A.
,
2005
, “
Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals
,”
J. Am. Chem. Soc.
,
127
(
20
), pp.
7480
7488
.
5.
Yang
,
X.
,
Zhao
,
D.
,
Leck
,
K. S.
,
Tan
,
S. T.
,
Tang
,
Y. X.
,
Zhao
,
J.
,
Demir
,
H. V.
, and
Sun
,
X.
,
2012
, “
Full Visible Range Covering InP/ZnS Nanocrystals With High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes
,”
Adv. Mater.
,
24
(
30
), pp.
4180
4185
.
6.
Kim
,
J.-H.
, and
Yang
,
H.
,
2014
, “
All-Solution-Processed, Multilayered CuInS2/ZnS Colloidal Quantum-Dot-Based Electroluminescent Device
,”
Opt. Lett.
,
39
(
17
), pp.
5002
5005
.
7.
Bruchez
,
M.
,
Moronne
,
M.
,
Gin
,
P.
,
Weiss
,
S.
, and
Alivisatos
,
A. P.
,
1998
, “
Semiconductor Nanocrystals as Fluorescent Biological Labels
,”
Science
,
281
(
5385
), pp.
2013
2016
.
8.
Huynh
,
W. U.
,
Dittmet
,
J. J.
, and
Alivisatos
,
A. P.
,
2002
, “
Hybrid Nanorod-Polymer Solar Cells
,”
Science
,
295
(
5564
), pp.
2425
2427
.
9.
Lee
,
J.
,
Sundar
,
V. C.
,
Heine
,
J. R.
,
Bawendi
,
M. G.
, and
Jensen
,
K. F.
,
2000
, “
Full Color Emission From II–VI Semiconductor Quantum Dot-Polymer Composites
,”
Adv. Mater.
,
12
(
15
), pp.
1102
1105
.
10.
Coe
,
S.
,
Woo
,
W. K.
,
Bawendi
,
M.
, and
Bulovic
,
V.
,
2002
, “
Electroluminescence From Single Monolayers of Nanocrystals in Molecular Organic Devices
,”
Nature
,
420
(
6917
), pp.
800
803
.
11.
Lall
,
P.
, and
Zhang
,
H.
,
2015
, “
Assessment of Lumen Degradation and Remaining Life of Light-Emitting Diodes Using Physics-Based Indicators and Particle Filter
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021002
.
12.
Petroski
,
J.
,
2014
, “
Advanced Natural Convection Cooling Designs for Light-Emitting Diode Bulb Systems
,”
ASME J. Electron. Packag.
,
136
(
4
), p.
041007
.
13.
Liu
,
Z.
,
Liu
,
S.
,
Wang
,
K.
, and
Luo
,
X.
,
2010
, “
Measurement and Numerical Studies of Optical Properties of YAG:Ce Phosphor for White Light-Emitting Diode Packaging
,”
Appl. Opt.
,
49
(
2
), pp.
247
257
.
14.
Lin
,
C. C.
, and
Liu
,
R.-S.
,
2011
, “
Advances in Phosphors for Light-Emitting Diodes
,”
J. Phys. Chem. Lett.
,
2
(
11
), pp.
1268
1277
.
15.
Wang
,
X.
,
Zhou
,
G.
,
Zhang
,
H.
,
Li
,
H.
,
Zhang
,
Z.
, and
Sun
,
Z.
,
2012
, “
Luminescent Properties of Yellowish Orange Y3Al5–xSixO12–xNx:Ce Phosphors and Their Applications in Warm White Light-Emitting Diodes
,”
J. Alloy. Compd.
,
519
, pp.
149
155
.
16.
Cho
,
J.
,
Kim
,
H.
,
Sone
,
C.
,
Park
,
Y.
,
Kim
,
Y. S.
,
Kubota
,
S.
, and
Yoon
,
E.
,
2009
, “
Study of UV Excited White Light-Emitting Diodes for Optimization of Luminous Efficiency and Color Rendering Index
,”
Phys. Status. Solidi-R.
,
3
(
1
), pp.
34
36
.
17.
Li
,
X.
,
Wu
,
Y.
,
Zhang
,
S.
,
Cai
,
B.
,
Gu
,
Y.
,
Song
,
J.
, and
Zeng
,
H.
,
2016
, “
CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes
,”
Adv. Funct. Mater.
(in press).
18.
Kim
,
T.-H.
,
Jun
,
S.
,
Cho
,
K. S.
,
Chio
,
B. L.
, and
Jang
,
E.
,
2013
, “
Bright and Stable Quantum Dots and Their Applications in Full-Color Displays
,”
MRS Bull.
,
38
(
9
), pp.
712
720
.
19.
Schubert
,
E. F.
, and
Kim
,
J. K.
,
2005
, “
Solid-State Light Sources Getting Smart
,”
Science
,
308
(
5726
), pp.
1274
1278
.
20.
Schubert
,
E. F.
,
Kim
,
J. K.
,
Luo
,
H.
, and
Xi
,
J.-Q.
,
2006
, “
Solid-State Lighting—A Benevolent Technology
,”
Rep. Prog. Phys.
,
69
(
12
), pp.
3069
3099
.
21.
Shirasaki
,
Y.
,
Supran
,
G. J.
,
Bawendi
,
M. G.
, and
Bulovic
,
V.
,
2013
, “
Emergence of Colloidal Quantum-Dot Light-Emitting Technologies
,”
Nat. Photonics
,
7
(
1
), pp.
13
23
.
22.
Talapin
,
D. V.
, and
Steckel
,
J.
,
2013
, “
Quantum Dot Light-Emitting Devices
,”
MRS Bull.
,
38
(
9
), pp.
685
695
.
23.
Unnithan
,
A. R.
,
Barakat
,
N. A. M.
,
Abadir
,
M. F.
,
Yousef
,
A.
, and
Kim
,
H. Y.
,
2012
, “
Novel CdPdS/PVAc Core-Shell Nanofibers as an Effective Photocatalyst for Organic Pollutants Degradation
,”
J. Mol. Catal. A: Chem.
,
363–364
, pp.
186
194
.
24.
Wu
,
Y.
,
Bao
,
B.
,
Su
,
B.
, and
Jiang
,
L.
,
2013
, “
Directed Growth of Calcein/Nile Red Coaxial Nanowire Arrays Via a Two-Step Dip-Coating Approach
,”
J. Mater. Chem. A
,
1
(
30
), pp.
8581
8586
.
25.
Kakati
,
J.
, and
Datta
,
P.
,
2013
, “
On Characteristics of PVA/CdS and PVA/CdS:Cu Nanocomposites for Applications as LED
,”
J. Lumin.
,
138
, pp.
25
31
.
26.
Kharazmi
,
A.
,
Saion
,
E.
,
Faraji
,
N.
,
Soltani
,
N.
, and
Dehzangi
,
A.
,
2013
, “
Optical Properties of CdS/PVA Nanocomposite Films Synthesized Using the Gamma-Irradiation-Induced Method
,”
Chinese Phys. Lett.
,
30
(
5
), p.
057803
.
27.
Li
,
Y.
,
Zhang
,
W.
,
Li
,
K.
,
Yao
,
Y.
,
Niu
,
J.
, and
Chen
,
Y.
,
2012
, “
Oxidative Dissolution of Polymer-Coated CdSe/ZnS Quantum Dots Under UV Irradiation: Mechanisms and Kinetics
,”
Environ. Pollut.
,
164
, pp.
259
266
.
28.
Fragoulu
,
D.
,
Resta
,
V.
,
Pompa
,
P. P.
,
Laera
,
A. M.
,
Gaputo
,
G.
,
Tapfer
,
L.
,
Cingolani
,
R.
, and
Athanassiou
,
A.
,
2009
, “
Patterned Structures of In Situ Size Controlled CdS Nanocrystals in a Polymer Matrix Under UV Irradiation
,”
Nanotechnology
,
20
(
15
), p.
155302
.
29.
Chu
,
M.
,
Zhou
,
L.
,
Song
,
X.
,
Pan
,
M.
,
Zhang
,
L.
,
Sun
,
Y.
,
Zhu
,
J.
, and
Ding
,
Z.
,
2006
, “
Incorporating Quantum Dots Into Polymer Microspheres Via a Spray-Drying and Thermal Denaturizing Approach
,”
Nanotechnology
,
17
(
6
), pp.
1791
1796
.
30.
Sato
,
M.
,
Kawata
,
A.
,
Morito
,
S.
,
Sato
,
Y.
, and
Yamaguchi
,
I.
,
2008
, “
Preparation and Properties of Polymer/Zinc Oxide Nanocomposites Using Functionalized Zinc Oxide Quantum Dots
,”
Eur. Polym. J.
,
44
(
11
), pp.
3430
3438
.
31.
Yoon
,
C.
,
Hong
,
H.-G.
,
Kim
,
H. C.
,
Hwang
,
D.
,
Lee
,
D. C.
,
Kim
,
C. K.
,
Kim
,
Y. J.
, and
Lee
,
K.
,
2013
, “
High Luminescence Efficiency White Light Emitting Diodes Based on Surface Functionalized Quantum Dots Dispersed in Polymer Matrices
,”
Colloid Surf. A
,
428
, pp.
86
91
.
32.
Kim
,
H.
,
Jang
,
H. S.
,
Kwon
,
B.-H.
,
Suh
,
M.
,
Kim
,
Y.
,
Cheong
,
S. H.
, and
Jeon
,
D. Y.
,
2012
, “
In Situ Synthesis of Thiol-Capped CuInS2-ZnS Quantum Dots Embedded in Silica Powder by Sequential Ligand-Exchange and Silanization
,”
Electrochem. Solid-State Lett.
,
15
(
2
), pp.
K16
K18
.
33.
Qu
,
H.
,
Cao
,
L.
,
Su
,
G.
, and
Liu
,
W.
,
2013
, “
Effect of Inorganic Shells on Luminescence Properties of ZnS:Ag Nanoparticles
,”
J. Mater. Sci.
,
48
(
14
), pp.
4952
4961
.
34.
Reitinger
,
N.
,
Hohenau
,
A.
,
Kostler
,
S.
,
Krenn
,
J. R.
, and
Leitner
,
A.
,
2011
, “
Radiationless Energy Transfer in CdSe-ZnS Quantum Dot Aggregates Embedded in PMMA
,”
Phys. Status Solidi A
,
208
(
3
), pp.
710
714
.
35.
Wang
,
X.
,
Li
,
W.
, and
Sun
,
K.
,
2011
, “
Stable Efficient CdSe/CdS/ZnS Core/Multi-Shell Nanophosphors Fabricated Through a Phosphine-Free Route for White Light-Emitting-Diodes With High Color Rendering Properties
,”
J. Mater. Chem.
,
21
(
24
), pp.
8558
8565
.
36.
Mamedov
,
A. A.
,
Belov
,
A.
,
Giersig
,
M.
,
Mamedova
,
N. N.
, and
Kotov
,
N. A.
,
2001
, “
Nanorainbows: Graded Semiconductor Films From Quantum Dots
,”
J. Am. Chem. Soc.
,
123
(
31
), pp.
7738
7739
.
37.
Gao
,
M.
,
Sun
,
J.
,
Dulteith
,
E.
,
Gaponik
,
N.
,
Lemmer
,
U.
, and
Feldmann
,
J.
,
2002
, “
Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method
,”
Langmuir
,
18
(
10
), pp.
4098
4102
.
38.
Murakoshi
,
K.
,
Hosokawa
,
H.
,
Saito
,
M.
,
Wada
,
Y.
, and
Yanagida
,
S.
,
1998
, “
Control of Surface Coverage and Solubility of Thiophenolate-Capped CdS Nanocrystallites
,”
J. Colloid Interface Sci.
,
203
(
1
), pp.
225
228
.
39.
Tamborra
,
M.
,
Striccoli
,
M.
,
Comparelli
,
R.
,
Curri
,
M. L.
,
Petrella
,
A.
, and
Agostiano
,
A.
,
2004
, “
Optical Properties of Hybrid Composites Based on Highly Luminescent CdS Nanocrystals in Polymer
,”
Nanotechnology
,
15
(
4
), pp.
S240
S244
.
40.
Erskine
,
L. L.
,
Emrick
,
T.
,
Alivisatos
,
A. P.
, and
Frechet
,
J. M. J.
,
2000
, “
Preparations of Semiconductor Nanocrystal-Polystyrene Hybrid Materials
,” Spring National Americal Chemical Society Meeting, San Francisco, CA, Mar. 26–31.
41.
Zhang
,
H.
,
Cui
,
Z.
,
Wang
,
Y.
,
Zhang
,
K.
,
Ji
,
X.
,
Lu
,
C.
,
Yang
,
B.
, and
Gao
,
M.
,
2003
, “
From Water-Soluble CdTe Nanocrystals to Fluorescent Nanocrystal-Polymer Transparent Composites Using Polymerizable Surfactants
,”
Adv. Mater.
,
15
(
10
), pp.
777
780
.
42.
Zhao
,
B.
,
Yao
,
X.
,
Gao
,
M.
,
Sun
,
K.
,
Zhang
,
J.
, and
Li
,
W.
, “
Doped Quantum Dots@Silica Nanocomposites for White Light-Emitting Diodes
,”
Nanoscale
,
7
(
41
), pp.
17231
17236
.
43.
Yang
,
P.
,
Ando
,
M.
, and
Murase
,
N.
,
2011
, “
Highly Luminescent CdSe/CdxZn1–xS Quantum Dots Coated With Thickness-Controlled SiO2 Shell through Silanization
,”
Langmuir
,
27
(
15
), pp.
9535
9540
.
44.
Zhou
,
C.
,
Shen
,
H.
,
Wang
,
H.
,
Xu
,
W.
,
Mao
,
M.
,
Wang
,
S.
, and
Li
,
L. S.
,
2012
, “
Synthesis of Silica Protected Photoluminescence QDs and Their Applications for Transparent Fluorescent Films With Enhanced Photochemical Stability
,”
Nanotechnology
,
23
(
42
), p.
425601
.
45.
Kim
,
H.
,
Jang
,
H. S.
,
Kwon
,
B. H.
,
Suh
,
M.
,
Kim
,
Y.
,
Cheong
,
S. H.
, and
Jeon
,
D. Y.
,
2012
, “
In Situ Synthesis of Thiol-Capped CuInS2-ZnS Quantum Dots Embedded in Silica Powder by Sequential Ligand-Exchange and Silanization
,”
Electrochem. Solid-State Lett.
,
15
(
2
), pp.
K16
K18
.
46.
Kim
,
Y.-K.
,
Chio
,
K.-C.
,
Ahn
,
S.-H.
, and
Cho
,
Y.-S.
,
2012
, “
A Facile Synthesis of SiO2-Based Nanocomposites Containing Multiple Quantum Dots at High Concentration for LED Applications
,”
RSC Adv.
,
2
(
16
), pp.
6411
6413
.
47.
Woo
,
H.
,
Lim
,
J.
,
Lee
,
Y.
,
Sung
,
J.
,
Shin
,
H.
,
Oh
,
J. M.
,
Chio
,
M.
,
Yoon
,
H.
,
Bae
,
W. K.
, and
Char
,
K.
,
2013
, “
Robust, Processable, and Bright Quantum Dot/Organosilicate Hybrid Films With Uniform QD Distribution Based on Thiol-Containing Organosilicate Ligands
,”
J. Mater. Chem. C
,
1
(
10
), pp.
1983
1989
.
48.
Jun
,
S.
,
Lee
,
J.
, and
Jang
,
E.
,
2013
, “
Highly Luminescent and Photostable Quantum Dot-Silica Monolith and Its Application to Light-Emitting Diodes
,”
ACS Nano
,
7
(
2
), pp.
1472
1477
.
49.
Song
,
W.-S.
,
Kim
,
J.-H.
, and
Yang
,
H.
,
2013
, “
Silica-Embedded Quantum Dots as Downconverters of Light-Emitting Diode and Effect of Silica on Device Operational Stability
,”
Mater. Lett.
,
111
, pp.
104
107
.
50.
Sun
,
H.
,
Zhang
,
J.
,
Zhang
,
H.
,
Xuan
,
Y.
,
Wang
,
C.
,
Li
,
M.
,
Tian
,
Y.
,
Ning
,
Y.
,
Ma
,
D.
, and
Yang
,
B.
,
2006
, “
Pure White-Light Emission of Nanocrystal-Polymer Composites
,”
Chemphyschem
,
7
(
12
), pp.
2492
2496
.
51.
Zhang
,
H.
,
Wang
,
C.
,
Li
,
M.
,
Ji
,
X.
,
Zhang
,
J.
, and
Yang
,
B.
,
2005
, “
Fluorescent Nanocrystal-Polymer Composites From Aqueous Nanocrystals: Methods Without Ligand Exchange
,”
Chem. Mater.
,
17
(
19
), pp.
4783
4788
.
52.
Zhang
,
H.
,
Wang
,
C.
,
Li
,
M.
,
Zhang
,
J.
,
Lu
,
G.
, and
Yang
,
B.
,
2005
, “
Fluorescent Nanocrystal-Polymer Complexes With Flexible Processability
,”
Adv. Mater.
,
17
(
7
), pp.
853
857
.
53.
Tetsuka
,
H.
,
Ebina
,
T.
, and
Mizukami
,
F.
,
2008
, “
Highly Luminescent Flexible Quantum Dot-Clay Films
,”
Adv. Mater.
,
20
(
16
), pp.
3039
3043
.
54.
Qi
,
W.
,
Wang
,
Y.
,
Yu
,
Z.
,
Li
,
B.
, and
Wu
,
L.
,
2013
, “
Fabrication of Transparent and Luminescent CdTe/TiO2 Hybrid Film With Enhanced Photovoltaic Property
,”
Mater. Lett.
,
107
, pp.
60
63
.
55.
Han
,
M.
,
Gao
,
X.
,
Su
,
J.
, and
Nie
,
S.
,
2001
, “
Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules
,”
Nat. Biotechnol.
,
19
(
7
), pp.
631
635
.
56.
Chen
,
W.
,
Wang
,
K.
,
Hao
,
J.
,
Wu
,
D.
,
Wang
,
S.
,
Qin
,
J.
,
Li
,
C.
, and
Cao
,
W.
,
2015
, “
Highly Efficient and Stable Luminescence From Microbeans Integrated With Cd-Free Quantum Dots for White-Light-Emitting Diodes
,”
Part. Part. Syst. Charact.
,
32
(
10
), pp.
922
927
.
57.
Stsiapura
,
V.
,
Sukhanova
,
A.
,
Artemyev
,
M.
,
Pluot
,
M.
,
Cohen
,
J. H. M.
,
Baranov
,
A. V.
,
Oleinikov
,
V.
, and
Nabiev
,
I.
,
2004
, “
Functionalized Nanocrystal-Tagged Fluorescent Polymer Beads: Synthesis, Physicochemical Characterization, and Immunolabeling Application
,”
Anal. Biochem.
,
334
(
2
), pp.
257
265
.
58.
Bradley
,
M.
,
Bruno
,
N.
, and
Vincent
,
B.
,
2005
, “
Distribution of CdSe Quantum Dots Within Swollen Polystyrene Microgel Particles Using Confocal Microscopy
,”
Langmuir
,
21
(
7
), pp.
2750
2753
.
59.
Schubert
,
E. F.
,
2003
,
Light-Emitting Diodes
,
Cambridge University Press
,
Cambridge, UK
, Chap. 12.
60.
Davis
,
W.
, and
Ohno
,
Y.
,
2010
, “
Color Quality Scale
,”
Opt. Eng.
,
49
(
3
), p.
033602
.
61.
Erdem
,
T.
,
Nizamoglu
,
S.
,
Sun
,
X.
, and
Demir
,
H. V.
,
2010
, “
A Photometric Investigation of Ultra-Efficient LEDs With High Color Rendering Index and High Luminous Efficacy Employing Nanocrystal Quantum Dot Luminophores
,”
Opt. Express
,
18
(
1
), pp.
340
347
.
62.
Phillips
,
J. M.
,
Coltrin
,
M. E.
,
Crawford
,
M. H.
,
Fischer
,
A. J.
,
Krames
,
M. R.
,
Mueller-Mach
,
R.
,
Mueller
,
G. O.
,
Ohno
,
Y.
,
Rohwer
,
L. E. S.
,
Simmons
,
J. A.
, and
Tsao
,
J. Y.
,
2007
, “
Research Challenges to Ultra-Efficient Inorganic Solid-State Lighting
,”
Laser Photonics Rev.
,
1
(
4
), pp.
307
333
.
63.
Zhong
,
P.
,
He
,
G.
, and
Zhang
,
M.
,
2012
, “
Optimal Spectra of White Light-Emitting Diodes Using Quantum Dot Nanophosphors
,”
Opt. Express
,
20
(
8
), pp.
9122
9134
.
64.
Chen
,
H.-S.
,
Hsu
,
C.-K.
, and
Hong
,
H.-Y.
,
2006
, “
InGaN–CdSe–ZnSe Quantum Dots White LEDs
,”
IEEE Photonics Techol. Lett.
,
18
(
1–4
), pp.
193
195
.
65.
Chen
,
H.-S.
,
Yeh
,
D.-M.
,
Lu
,
C.-F.
,
Huang
,
C.-F.
,
Shiao
,
W.-Y.
,
Huang
,
J.-J.
,
Yang
,
C.-C.
,
Liu
,
I.-S.
, and
Su
,
W.-F.
,
2006
, “
White Light Generation With CdSe–ZnS Nanocrystals Coated on an InGaN-GaN Quantum-Well Blue/Green Two-Wavelength Light-Emitting Diode
,”
IEEE Photonics Technol. Lett.
,
18
(
13–16
), pp.
1430
1432
.
66.
Nizamoglu
,
S.
,
Ozel
,
T.
,
Sari
,
E.
, and
Demir
,
H. V.
,
2007
, “
White Light Generation Using CdSe/ZnS Core-Shell Nanocrystals Hybridized With InGaN/GaN Light Emitting Diodes
,”
Nanotechnology
,
18
(
6
), p.
065709
.
67.
Nizamoglu
,
S.
,
Erdem
,
T.
,
Sun
,
X.
, and
Demir
,
H. V.
,
2010
, “
Warm-White Light-Emitting Diodes Integrated With Colloidal Quantum Dots for High Luminous Efficacy and Color Rendering
,”
Opt. Lett.
,
35
(
20
), pp.
3372
3374
.
68.
Park
,
S. H.
,
Hong
,
A.
,
Kim
,
J. H.
,
Yang
,
H.
,
Lee
,
K.
, and
Jang
,
H. S.
,
2015
, “
Highly Bright Yellow-Green-Emitting CuInS2 Colloidal Quantum Dots With Core/Shell/Shell Architecture for White Light-Emitting Diodes
,”
ACS Appl. Mater. Interfaces
,
7
(
12
), pp.
6764
6771
.
69.
Song
,
W.-S.
, and
Yang
,
H.
,
2012
, “
Fabrication of White Light-Emitting Diodes Based on Solvothermally Synthesized Copper Indium Sulfide Quantum Dots as Color Converters
,”
Appl. Phys. Lett.
,
100
(
18
), p.
183104
.
70.
Kim
,
S.
,
Kim
,
T.
,
Kang
,
M.
,
Kwak
,
S. K.
,
Yoo
,
T. W.
,
Park
,
L. S.
,
Yang
,
I.
,
Hwang
,
S.
,
Lee
,
J. E.
, and
Kim
,
S. K.
,
2012
, “
Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes
,”
J. Am. Chem. Soc.
,
134
(
8
), pp.
3804
3809
.
71.
Kim
,
K.
,
Jeong
,
S.
,
Woo
,
J. Y.
, and
Han
,
C.-S.
,
2012
, “
Successive and Large-Scale Synthesis of InP/ZnS Quantum Dots in a Hybrid Reactor and Their Application to White LEDs
,”
Nanotechnology
,
23
(
6
), p.
065602
.
72.
Mutlugun
,
E.
,
Hernandez-Martinez
,
P. L.
,
Eroglu
,
C.
,
Coskun
,
Y.
,
Erdem
,
T.
,
Sharma
,
V. K.
,
Unal
,
E.
,
Panda
,
S. K.
,
Hickey
,
S. G.
, and
Gaponik
,
N.
,
2012
, “
Large-Area (Over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots
,”
Nano Lett.
,
12
(
8
), pp.
3986
3993
.
73.
Gosnell
,
J. D.
,
Schreuder
,
M. A.
,
Rosenthal
,
S. J.
, and
Weiss
,
S. M.
,
2007
, “
Efficiency Improvements of White-Light CdSe Nanocrystal-Based LEDs
,”
Proc. SPIE
,
6669
, p.
66690R
.
74.
Nizamoglu
,
S.
, and
Demir
,
H. V.
,
2007
, “
Hybrid White Light Sources Based on Layer-by-Layer Assembly of Nanocrystals on Near-UV Emitting Diodes
,”
Nanotechnology
,
18
(
40
), p.
405702
.
75.
Ziegler
,
J.
,
Xu
,
S.
,
Kucur
,
E.
,
Meister
,
F.
,
Batentschuk
,
M.
,
Gindele
,
F.
, and
Nann
,
T.
,
2008
, “
Silica-Coated InP/ZnS Nanocrystals as Converter Material in White LEDs
,”
Adv. Mater.
,
20
(
21
), pp.
4068
4073
.
76.
Shen
,
C.
,
2008
, “
CdSe/ZnS/CdS Core/Shell Quantum Dots for White LEDs
,”
Proc. SPIE
,
7138
, p.
71382E
.
77.
Wang
,
H.
,
Lee
,
J.-S.
,
Ryu
,
J.-H.
,
Hong
,
C.-H.
, and
Cho
,
Y.-H.
,
2008
, “
White Light Emitting Diodes Realized by Using an Active Packaging Method With CdSe/ZnS Quantum Dots Dispersed in Photosensitive Epoxy Resins
,”
Nanotechnology
,
19
(
14
), p.
145202
.
78.
Jang
,
H. S.
,
Yang
,
H.
,
Kim
,
S. W.
,
Han
,
J. Y.
,
Lee
,
S.-G.
, and
Jeon
,
D. Y.
,
2008
, “
White Light-Emitting Diodes With Excellent Color Rendering Based on Organically Capped CdSe Quantum Dots and Sr3SiO5: Ce3+, Li+ Phosphors
,”
Adv. Mater.
,
20
(
14
), pp.
2696
2702
.
79.
Jang
,
H. S.
,
Kwon
,
B.-H.
,
Yang
,
H.
, and
Jeon
,
D. Y.
,
2009
, “
Bright Three-Band White Light Generated From CdSe/ZnSe Quantum Dot-Assisted Sr3SiO5:Ce3+,Li+-Based White Light-Emitting Diode With High Color Rendering Index
,”
App. Phys. Lett.
,
95
(
16
), p.
161901
.
80.
Yu
,
H. J.
,
Park
,
K.
,
Chung
,
W.
,
Kim
,
J.
, and
Kim
,
S. H.
,
2009
, “
White Light Emission From Blue InGaN LED Precoated With Conjugated Copolymer/Quantum Dots as Hybrid Phosphor
,”
Synth. Met.
,
159
(
23–24
), pp.
2474
2477
.
81.
Song
,
W.-S.
,
Kim
,
H.-J.
,
Kim
,
Y.-S.
, and
Yang
,
H.
,
2010
, “
Synthesis of Ba2Si3O8:Eu2+ Phosphor for Fabrication of White Light-Emitting Diodes Assisted by ZnCdSe/ZnSe Quantum Dot
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
J319
J323
.
82.
Gosnell
,
J. D.
,
Rosenthal
,
S. J.
, and
Weiss
,
S. M.
,
2010
, “
White Light Emission Characteristics of Polymer-Encapsulated CdSe Nanocrystal Films
,”
IEEE Photonics Technol. Lett.
,
22
(
8
), pp.
541
543
.
83.
Dai
,
J.
,
Ji
,
Y.
,
Xu
,
C.
,
Sun
,
X.
,
Leck
,
K. S.
, and
Ju
,
Z. G.
,
2011
White Light Emission From CdTe Quantum Dots Decorated n-ZnO Nanorods/p-GaN Light-Emitting Diodes
,”
Appl. Phys. Lett.
,
99
(
6
), p.
063112
.
84.
Chen
,
C.
,
Chu
,
J.
,
Qian
,
F.
,
Zou
,
X.
,
Zhong
,
C.
,
Li
,
K.
, and
Jin
,
S.
,
2012
, “
High Color Rendering Index White LED Based on Nano-YAG:Ce3+ Phosphor Hybrid With CdSe/CdS/ZnS Core/Shell/Shell Quantum Dots
,”
J. Mod. Opt.
,
59
(
14
), pp.
1199
1203
.
85.
Zhu
,
L.
,
Xu
,
L.
,
Wang
,
J.
,
Yang
,
S.
,
Wang
,
C.
,
Chen
,
L.
, and
Chen
,
S.
,
2012
, “
Macromonomer-Induced CdTe Quantum Dots Toward Multicolor Fluorescent Patterns and White LEDs
,”
RSC Adv.
,
2
(
24
), pp.
9005
9010
.
86.
Song
,
W.-S.
,
Kim
,
J.-H.
,
Lee
,
J.-H.
,
Do
,
Y. R.
, and
Yang
,
H.
,
2012
, “
Synthesis of Color-Tunable Cu-In-Ga-S Solid Solution Quantum Dots With High Quantum Yields for Application to White Light-Emitting Diodes
,”
J. Mater. Chem.
,
22
(
41
), pp.
21901
21908
.
87.
Kwak
,
S. K.
,
Yoo
,
T. W.
,
Kim
,
B.-S.
,
Lee
,
S. M.
,
Lee
,
Y. S.
, and
Park
,
L. S.
,
2012
, “
White LED Packaging With Layered Encapsulation of Quantum Dots and Optical Properties
,”
Mol. Cryst. Liq. Cryst.
,
564
(
1
), pp.
33
41
.
88.
Wang
,
R.
,
Zhang
,
J.
,
Xu
,
X.
,
Wang
,
Y.
,
Zhou
,
L.
, and
Li
,
B.
,
2012
, “
White LED With High Color Rendering Index Based on Ca8Mg(SiO4)4Cl2:Eu2+ and ZnCdTe/CdSe Quantum Dot Hybrid Phosphor
,”
Mater. Lett.
,
84
, pp.
24
26
.
89.
Song
,
W.-S.
,
Kim
,
J.-H.
,
Lee
,
J.-H.
,
Lee
,
H.-S.
,
Jang
,
H. S.
, and
Yang
,
H.
,
2013
, “
Utilization of LiSrPO4:Eu Phosphor and Cu-In-S Quantum Dot for Fabrication of High Color Rendering White Light-Emitting Diode
,”
Mater. Lett.
,
92
, pp.
325
329
.
90.
Duan
,
H.
,
Jiang
,
Y.
,
Zhang
,
Y.
,
Sun
,
D.
,
Liu
,
C.
,
Huang
,
J.
,
Lan
,
X.
,
Zhou
,
H.
,
Chen
,
L.
, and
Zhong
,
H.
,
2013
, “
High Quantum-Yield CdSexS1-x/ZnS Core/Shell Quantum Dots for Warm White Light-Emitting Diodes With Good Color Rendering
,”
Nanotechnology
,
24
(
28
), p.
285201
.
91.
Song
,
W.-S.
,
Lee
,
S.-H.
, and
Yang
,
H.
,
2013
, “
Fabrication of Warm, High CRI White LED Using Non-Cadmium Quantum Dots
,”
Opt. Mater. Express
,
3
(
9
), pp.
1468
1473
.
92.
Yoon
,
H. C.
,
Oh
,
J. H.
, and
Do
,
Y. R.
,
2014
, “
High Color Rendering Index of Remote-Type White LEDs With Multi-Layered Quantum Dot-Phosphor Films and Short-Wavelength Pass Dichroic Filters
,”
Proc. SPIE
,
9190
, p.
919013
.
93.
Liang
,
R.
,
Yan
,
D.
,
Tian
,
R.
,
Yu
,
X.
,
Shi
,
W.
,
Li
,
C.
,
Wei
,
M.
,
Evans
,
D. G.
, and
Duan
,
X.
,
2014
, “
Quantum Dots-Based Flexible Films and Their Application as the Phosphor in White Light-Emitting Diodes
,”
Chem. Mater.
,
26
(
8
), pp.
2595
2600
.
94.
Chuang
,
P.-H.
,
Lin
,
C. C.
, and
Liu
,
R.-S.
,
2014
, “
Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes With High Color Rendering Index
,”
ACS Appl. Mater. Interfaces
,
6
(
17
), pp.
15379
15387
.
95.
Jo
,
D.-Y.
, and
Yang
,
H.
,
2015
, “
Spectral Broadening of Cu-In-Zn-S Quantum Dot Color Converters for High Color Rendering White Lighting Device
,”
J. Lumin.
,
166
, pp.
227
232
.
96.
Adam
,
M.
,
Erdem
,
T.
,
Stachowski
,
G. M.
,
Soran-Erdem
,
Z.
,
Lox
,
J. F. L.
,
Bauer
,
C.
,
Poppe
,
J.
,
Demir
,
L. V.
,
Gaponik
,
N.
, and
Eychmuller
,
A.
,
2015
, “
Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot-Salt Mixed Crystals
,”
ACS Appl. Mater. Interfaces
,
7
(
41
), pp.
23364
23371
.
97.
Li
,
F.
,
Li
,
W.
,
Fu
,
S.
, and
Xiao
,
H.
,
2015
, “
Formulating CdSe Quantum Dots for White Light-Emitting Diodes With High Color Rendering Index
,”
J. Alloy. Compd.
,
647
, pp.
837
843
.
98.
Lin
,
H.-Y.
,
Wang
,
S.-W.
,
Lin
,
C.-C.
,
Chen
,
K.-J.
,
Han
,
H.-V.
,
Tu
,
Z.-Y.
,
Tu
,
H.-H.
,
Chen
,
T.-M.
,
Shih
,
M.-H.
, and
Lee
,
P.-T.
,
2016
,
Excellent Color Quality of White-Light-Emitting Diodes by Embedding Quantum Dots in Polymers Material
,”
IEEE. J. Sel. Top. Quantum Electron.
,
22
(
1
), p.
2000107
.
99.
QD Vision
,
2013
, “
New Clor Technology Produces a TV Picture With the Most Radiant Reds, Brilliant Blues and Gorgeous Greens
,” QD Vision Inc., Lexington, MA, http://www.qdvision.com/content1566
100.
Nanosys
,
2016
, “
QDEF: Quantum Dot Enhancement Film
,” Nanosys Inc., Milpitas, CA, http://www.nanosysinc.com/what-we-do/display-backlighting/qdef
101.
Coe-Sullivan
,
S.
,
Liu
,
W.
,
Allen
,
P.
, and
Steckel
,
J. S.
,
2013
, “
Quantum Dots for LED Downconversion in Display Applications
,”
ECS J. Solid State Sci. Technol.
,
2
(
2
), pp.
R3026
R3030
.
102.
Erdem
,
T.
, and
Demir
,
H. V.
,
2013
, “
Color Science of Nanocrystal Quantum Dots for Lighting and Displays
,”
Nanophotonics
,
2
(
1
), pp.
57
81
.
103.
Luo
,
Z.
,
Chen
,
Y.
, and
Wu
,
S.-T.
,
2013
, “
Wide Color Gamut LCD With a Quantum Dot Backlight
,”
Opt. Express
,
21
(
22
), pp.
26269
26284
.
104.
Luo
,
Z.
,
Xu
,
D.
, and
Wu
,
S.-T.
,
2014
, “
Emerging Quantum-Dots-Enhanced LCDs
,”
J. Disp. Technol.
,
10
(
7
), pp.
526
539
.
105.
Zhu
,
R.
,
Luo
,
Z.
,
Chen
,
H.
,
Dong
,
Y.
, and
Wu
,
S.-T.
,
2015
, “
Realizing Rec. 2020 Color Gamut With Quantum Dot Displays
,”
Opt. Express
,
23
(
18
), pp.
23680
23693
.
106.
Protesescu
,
L.
,
Yakunin
,
S.
,
Bodnarchuk
,
M. I.
,
Krieg
,
F.
,
Caputo
,
R.
,
Hendon
,
C. H.
,
Yang
,
R. X.
,
Walsh
,
A.
, and
Kivalenko
,
M. V.
,
2015
, “
Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X=Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission With Wide Color Gamut
,”
Nano Lett.
,
15
(
6
), pp.
3692
3696
.
107.
Pathak
,
S.
,
Sakai
,
N.
,
Ricarola
,
F. W. R.
,
Stranks
,
S. D.
,
Liu
,
J.
,
Eperon
,
G. E.
,
Ducati
,
C.
,
Wojciechowski
,
K.
,
Griffiths
,
J. T.
, and
Haghighirad
,
A. A.
,
2015
, “
Perovskite Crystals for Tunable White Light Emission
,”
Chem. Mater.
,
27
(
23
), pp.
8066
8075
.
108.
Mancini
,
M. C.
,
Kairdolf
,
B. A.
,
Smith
,
A. M.
, and
Nie
,
S.
,
2008
, “
Oxidative Quenching and Degradation of Polymer-Encapsulated Quantum Dots: New Insights Into the Long-Term Fate and Toxicity of Nanocrystals In Vivo
,”
J. Am. Chem. Soc.
,
130
(
33
), pp.
10836
10837
.
109.
Buckner
,
S. W.
,
Konold
,
R. L.
, and
Jelliss
,
P. A.
,
2004
, “
Luminescence Quenching in PbS Nanoparticles
,”
Chem. Phys. Lett.
,
394
(
4–6
), pp.
400
404
.
110.
Tata
,
M.
,
Banerjee
,
S.
,
John
,
V. T.
,
Waguespack
,
Y.
, and
McPherson
,
G. L.
,
1997
, “
Fluorescence Quenching of CdS Nanocrystallites in AOT Water-in-Oil Microemulsions
,”
Colloid Surf. A
,
127
(
1–3
), pp.
39
46
.
111.
Inerbaev
,
T. M.
,
Masunov
,
A. E.
,
Khondaker
,
S. I.
,
Dobrinescu
,
A.
, and
Plamada
,
A.-V.
, and
Kawazoe
,
Y.
,
2009
, “
Quantum Chemistry of Quantum Dots-Effects of Ligands and Oxidation
,”
J. Chem. Phys.
,
131
(
4
), p.
044106
.
112.
Zhao
,
Y.
,
Riemersma
,
C.
,
Pietra
,
F.
,
Koole
,
R.
,
Donega
,
C. D.
, and
Meijerink
,
A.
,
2012
, “
High-Temperature Luminescence Quenching of Colloidal Quantum Dots
,”
ACS Nano
,
6
(
10
), pp.
9058
9067
.
113.
Chatterjee
,
S.
, and
Mukherjee
,
T. K.
,
2015
, “
Thermal Luminescence Quenching of Amine-Functionalized Silicon Quantum Dots: A PH and Wavelength-Dependent Study
,”
Phys. Chem. Phys. Chem.
,
17
(
37
), pp.
24078
24085
.
114.
Cheng
,
T.
,
Luo
,
X.
,
Huang
,
S.
, and
Liu
,
S.
,
2010
, “
Thermal Analysis and Optimization of Multiple LED Packaging Based on a General Analytical Solution
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
196
201
.
115.
Yuan
,
C.
,
Li
,
L.
,
Duan
,
B.
,
Xie
,
B.
,
Zhu
,
Y.
, and
Luo
,
X.
,
2016
, “
Locally Reinforced Polymer-Based Composites for Efficient Heat Dissipation of Local Heat Source
,”
Int. J. Therm. Sci.
,
102
, pp.
202
209
.
116.
Yuan
,
C.
,
Xie
,
B.
,
Huang
,
M.
,
Wu
,
R.
, and
Luo
,
X.
,
2016
, “
Thermal Conductivity Enhancement of Platelets Aligned Composites With Volume Fraction From 10% to 20%
,”
Int. J. Heat Mass Tran.
,
94
, pp.
20
28
.
117.
Deng
,
Y.
, and
Liu
,
J.
,
2010
, “
A Liquid Metal Cooling System for the Thermal Management of High Power LEDs
,”
Int. Common. Heat. Mass.
,
37
(
7
), pp.
788
791
.
118.
Guo
,
Z.
,
Zhao
,
L.
,
Pei
,
J.
,
Zhou
,
Z.
,
Gibson
,
G.
,
Brug
,
J.
,
Lam
,
S.
, and
Mao
,
S. S.
,
2010
, “
CdSe/ZnS Nanoparticle Composites With Amine-Functionalized Polyfluorene Derivatives for Polymeric Light-Emitting Diodes: Synthesis, Photophysical Properties, and the Electroluminescent Performance
,”
Macromolecules
,
43
(
4
), pp.
1860
1866
.
119.
Coe-Sullivan
,
S.
,
Woo
,
W. K.
,
Steckel
,
J. S.
,
Bawendi
,
M.
, and
Bulovic
,
V.
,
2003
, “
Tuning the Performance of Hybrid Organic/Inorganic Quantum Dot Light-Emitting Devices
,”
Org. Electron.
,
4
(
2–3
), pp.
123
130
.
120.
Smirnova
,
T. N.
,
Sakhno
,
O. V.
,
Yezhov
,
P. V.
,
Kokhtych
,
L. M.
,
Goldenberg
,
L. M.
, and
Stumpe
,
J.
,
2009
, “
Amplified Spontaneous Emission in Polymer-CdSe/ZnS-Nanocrystal DFB Structures Produced by the Holographic Method
,”
Nanotechnology
,
20
(
24
), p.
245707
.
121.
Jang
,
J.
,
Kim
,
S.
, and
Lee
,
K. J.
,
2007
, “
Fabrication of CdS/PMMA Core/Shell Nanoparticles by Dispersion Mediated Interfacial Polymerization
,”
Chem. Commun.
,
26
, pp.
2689
2691
.
122.
Khanna
,
R.
,
Singh
,
N.
,
Charan
,
S.
,
Lonkar
,
S. P.
,
Reddy
,
A. S.
,
Patil
,
Y.
, and
Viswanath
,
A. K.
,
2006
, “
The Processing of CdSe/Polymer Nanocomposites Via Solution Organometallic Chemistry
,”
Mater. Chem. Phys.
,
97
(
2–3
), pp.
288
294
.
123.
Song
,
H.
, and
Lee
,
S.
,
2007
, “
Photoluminescent (CdSe) ZnS Quantum Dot-Polymethylmethacrylate Polymer Composite Thin Films in the Visible Spectral Range
,”
Nanotechnology
,
18
(
5
), p.
055402
.
124.
Kwon
,
Y.-T.
,
Choi
,
Y.-M.
,
Kim
,
K.-H.
,
Lee
,
C.-G.
,
Lee
,
K.-J.
,
Kim
,
B.-S.
, and
Choa
,
Y.-H.
,
2014
, “
Synthesis of CdSe/ZnSe Quantum Dots Passivated With a Polymer for Oxidation Prevention
,”
Surf. Coat. Technol.
,
259
(
Part A
), pp.
83
86
.
125.
Lewis
,
J. S.
, and
Weaver
,
M. S.
,
2004
, “
Thin-Film Permeation-Barrier Technology for Flexible Organic Light-Emitting Devices
,”
IEEE J. Sel. Top. Quantum Electron.
,
10
(
1
), pp.
45
57
.
126.
Iwamori
,
S.
,
Gotoh
,
Y.
, and
Moorthi
,
K.
,
2003
, “
Silicon Oxide Gas Barrier Films Deposited by Reactive Sputtering
,”
Surf. Coat. Technol.
,
166
(
1
), pp.
24
30
.
127.
Wuu
,
D.-S.
,
Chen
,
T.-N.
,
Wu
,
C.-C.
,
Chiang
,
C.-C.
,
Chen
,
Y.-P.
,
Horng
,
R.-H.
, and
Juang
,
F.-S.
,
2006
, “
Transparent Barrier Coatings for Flexible Organic Light-Emitting Diode Applications
,”
Chem. Vap. Deposition
,
12
(
4
), pp.
220
224
.
128.
Meyer
,
J.
,
Gorrn
,
P.
,
Bertram
,
F.
,
Hamwi
,
S.
,
Winkler
,
T.
,
Johnnes
,
H.-H.
,
Weimann
,
T.
,
Hinze
,
P.
,
Riedl
,
T.
, and
Kowalsky
,
W.
,
2009
, “
Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas-Diffusion Barriers—A Strategy for Reliable Encapsulation of Organic Electronics
,”
Adv. Mater.
,
21
(
18
), pp.
1845
1849
.
129.
Jang
,
E.-P.
,
Song
,
W.-S.
,
Lee
,
K.-H.
, and
Yang
,
H.
,
2013
, “
Preparation of a Photo-Degradation-Resistant Quantum Dot-Polymer Composite Plate for Use in the Fabrication of a High-Stability White-Light-Emitting Diode
,”
Nanotechnology
,
24
(
4
), p.
045607
.
130.
Shi
,
A.
,
Wang
,
X.
,
Meng
,
X.
,
Liu
,
X.
,
Li
,
H.
, and
Zhao
,
J.
,
2012
, “
Temperature-Dependent Photoluminescence of CuInS2 Quantum Dots
,”
J. Lumin.
,
132
(
7
), pp.
1819
1823
.
131.
Xie
,
B.
,
Hu
,
R.
,
Yu
,
X.
,
Shang
,
B.
,
Ma
,
Y.
, and
Luo
,
X.
,
2016
, “
Effect of Packaging Method on Performance of Light-Emitting Diodes With Quantum Dot Phosphor
,”
IEEE Photonics Technol. Lett.
,
28
(
10
), pp.
1115
1118
.
132.
Yin
,
L.
,
Bai
,
Y.
,
Zhou
,
J.
,
Cao
,
J.
,
Sun
,
X.
, and
Zhang
,
J.
,
2015
, “
The Thermal Stability Performances of the Color Rendering Index of White Light Emitting Diodes With the Red Quantum Dots Encapsulation
,”
Opt. Mater.
,
42
, pp.
187
192
.
133.
Woo
,
J. Y.
,
Kim
,
K.
,
Jeong
,
S.
, and
Han
,
C.-S.
,
2011
, “
Enhanced Photoluminance of Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials for Light Emitting Diodes
,”
J. Phys. Chem. C
,
115
(
43
), pp.
20945
20952
.
134.
Oh
,
J. H.
,
Choi
,
D. B.
,
Lee
,
K.-H.
,
Yang
,
H.
, and
Do
,
Y. R.
,
2015
, “
Enhanced Light Extraction From Green Quantum Dot Light-Emitting Diodes by Attaching Microstructure Arrayed Films
,”
IEEE J. Sel. Top. Quantum Electron
,
22
(
2
), p.
2000206
.
135.
Shin
,
M.-H.
,
Hong
,
H.-G.
,
Kim
,
H.-J.
, and
Kim
,
Y.-J.
,
2014
, “
Enhancement of Optical Extraction Efficiency in White LED Package With Quantum Dot Phosphors and Air-Gap Structure
,”
Appl. Phys. Express
,
7
(
5
), p.
052101
.
136.
Vasudevan
,
D.
,
Gaddam
,
R. R.
, and
Trinchi
,
A.
,
2015
, “
Core-Shell Quantum Dots: Properties and Applications
,”
J. Alloy. Compd.
,
636
, pp.
395
404
.
137.
Hines
,
D. A.
, and
Kamat
,
P. V.
,
2014
, “
Recent Advances in Quantum Dot Surface Chemistry
,”
ACS Appl. Mater. Interfaces
,
6
(
5
), pp.
3041
3057
.
138.
Ong
,
W.-L.
,
Rupich
,
S. M.
,
Talapin
,
D. V.
,
McGaughey
,
A. J. H.
, and
Malen
,
J. A.
,
2013
, “
Surface Chemistry Mediates Thermal Transport in Three-Dimensional Nanocrystal Arrays
,”
Nat. Mater.
,
12
(
5
), pp.
410
415
.
You do not currently have access to this content.