Three-dimensional integrated circuits (3D ICs) attract much interest due to several advantages over traditional microelectronics design, such as electrical performance improvement and reducing interconnect delay. While the power density of 3D ICs increases because of vertical integration, the available substrate area for heat removal does not change. Thermal modeling of 3D ICs is important for improving thermal and electrical performance. Experimental investigation on the thermal measurement of 3D ICs and determination of key physical parameters in 3D ICs thermal design are curtail. One such important parameter in thermal analysis is the interdie thermal resistance between adjacent die bonded together. This paper describes an experimental method to measure the value of interdie thermal resistance between two adjacent dies in a 3D IC. The effect of heating one die on the temperature of the other die in a two-die stack is measured over a short time period using high-speed data acquisition to negate the effect of boundary conditions. Numerical simulation is performed and based on a comparison between experimental data and the numerical model, the interdie thermal resistance between the two dies is determined. A theoretical model is also developed to estimate the value of the interdie thermal resistance. Results from this paper are expected to assist in thermal design and management of 3D ICs.

References

1.
Banerjee
,
K.
,
Souri
,
S. J.
, and
Saraswat
,
K. C.
,
2001
, “
3-D ICs: A Novel Chip Design for Improving Deep Submicron Interconnect Performance and Systems-on-Chip Integration
,”
Proc. IEEE
,
89
(
5
), pp.
602
633
.
2.
Patti
,
R.
,
2006
, “
Three-Dimensional Integrated Circuits and the Future of System-on-Chip Designs
,”
Proc. IEEE
,
94
(
6
), pp.
1214
1224
.
3.
Beyne
,
E.
,
2006
, “
3D System Integration Technologies
,”
International Symposium on VLSI Technology, Systems, and Applications
(
VLSI-TSA-Tech
), Hsinchu, Taiwan, Apr. 24–26, pp. 1–9.
4.
Said
,
F.
,
Abbott
,
D.
, and
Franzon
,
P. D.
,
1998
, “
A Review of 3-D Packaging Technology
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part B
,
21
(
1
), pp.
2
14
.
5.
Knickerbocker
,
J. U.
,
Andry
,
P. S.
,
Dang
,
B.
,
Horton
,
R. R.
,
Patel
,
C. S.
,
Polastre
,
R. J.
,
Sakuma
,
K.
,
Sprogis
,
E. S.
,
Tsang
,
C. K.
,
Webb
,
B. C.
, and
Wright
,
S. L.
,
2008
, “
3D Silicon Integration
,”
58th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 27–30, pp. 538–543.
6.
Chan
,
V. W. C.
,
Chan
,
P. C. H.
, and
Chan
,
M.
,
2001
, “
Three-Dimensional CMOS SOI Integrated Circuit Using High Temperature Metal-Induced Lateral Crystallization
,”
IEEE Trans. Electron Devices
,
48
(
7
), pp.
1394
1399
.
7.
Topol
,
A. W.
,
La Tulipe
,
D. C.
,
Shi
,
L.
,
Frank
,
D. J.
,
Bernstein
,
K.
,
Steen
,
S. E.
,
Kumar
,
A.
,
Singco
,
G. U.
,
Young
,
A. M.
,
Guarini
,
K. W.
, and
Leong
,
M.
,
2006
, “
Three-Dimensional Integrated Circuits
,”
IBM J. Res. Dev.
,
50
(
4/5
), pp. 491–506.
8.
Guarini
,
K. W.
,
Topol
,
A. T.
,
Leong
,
M.
,
Yu
,
R.
,
Shi
,
L.
,
Newport
,
M. R.
,
Frank
,
D. J.
,
Singh
,
D. V.
,
Cohen
,
G. M.
,
Nitta
,
S. V.
,
Boyd
,
D. C.
,
O'Neil
,
P. A.
,
Tempest
,
S. L.
,
Pogge
,
H. B.
,
Purushothaman
,
S.
, and
Haensch
,
W. E.
,
2002
, “
Electrical Integrity of State-of-the-Art 0.13l m SOI CMOS Devices and Circuits Transferred for Three-Dimensional (3D) Integrated Circuit (IC) Fabrication
,” International Electron Devices Meeting (
IEDM
) Technical Digest, San Francisco, CA, Dec. 8–11, p.
943
.
9.
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Kloter
,
U.
,
Wunderle
,
B.
,
Oppermann
,
H.
, and
Reichl
,
H.
,
2009
, “
Interlayer Cooling Potential in Vertically Integrated Packages
,”
Microsyst. Technol.
,
15
(
1
), pp.
57
74
.
10.
Schindler-Saefkow
,
F.
,
Wittler
,
O.
,
May
,
D.
, and
Michel
,
B.
,
2006
, “
Thermal Management in a 3D-PCB-Package With Water Cooling
,”
Electronics Systemintegration Technology Conference
(
ESTC
), Dresden, Germany, Sept. 5–7, pp. 107–110.
11.
Sikka
,
K.
,
Wakil
,
J.
,
Toy
,
H.
, and
Liu
,
H.
,
2012
, “
An Efficient Lid Design for Cooling Stacked Flip-Chip 3D Packages
,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
606
611
.
12.
Cong
,
J.
,
Luo
,
G.
,
Wei
,
J.
, and
Zhang
,
Y.
,
2007
, “
Thermal-Aware 3D IC Placement Via Transformation
,”
Asia and South Pacific Design Automation Conference
(
ASP-DAC
), Yokohama, Japan, Jan. 23–26, pp.
780
785
.
13.
Goplen
,
B.
, and
Sapatnekar
,
S. S.
,
2006
, “
Placement of Thermal Vias in 3D ICs Using Various Thermal Objectives
,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
,
26
(
4
), pp.
692
709
.
14.
Savidis
,
I.
,
Alam
,
S.
,
Jain
,
A.
,
Pozder
,
S.
,
Jones
,
R. E.
, and
Chatterjee
,
R.
,
2010
, “
Electrical Modeling and Characterization of Through-Silicon Vias (TSVs) for 3D Integrated Circuits
,”
Microelectron. J.
,
41
(
1
), pp.
9
16
.
15.
Pi
,
Y.
,
Wang
,
W.
, and
Jin
,
Y.
,
2016
, “
An Accurate Calculation Method on Thermal Effectiveness of TSV and Wire
,”
IEEE 18th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Nov. 30–Dec. 3, pp. 569–573.
16.
Rencz
,
M.
,
2005
, “
Thermal Issues in Stacked Die Packages
,” 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
STHERM
), San Jose, CA, Mar. 15–17, pp. 307–312.
17.
Link
,
G. M.
, and
Vijaykrishnan
,
N.
,
2006
, “
Thermal Trends in Emerging Technologies
,”
7th International Symposium on Quality Electronic Design
(
ISQED
), San Jose, CA, Mar. 27–29, pp. 625–632.
18.
Loi
,
G. L.
,
Agrawal
,
B.
,
Srivastava
,
N.
,
Lin
,
S.-C.
,
Sherwood
,
T.
, and
Banerjee
,
K.
,
2006
, “
A Thermally-Aware Performance Analysis of Vertically Integrated (3-D) Processor-Memory Hierarchy
,”
43rd ACM/IEEE Design Automation Conference
(
DAC
), San Francisco, CA, July 24–28, pp. 991–996.
19.
Das
,
S.
,
Chandrakasan
,
A.
, and
Reif
,
R.
,
2004
, “
Timing, Energy, and Thermal Performance of Three Dimensional Integrated Circuits
,” 14th ACM Great Lakes Symposium on
VLSI
, Boston, MA, Apr. 26–28, pp. 338–343.
20.
Yan
,
H.
,
Zhou
,
Q.
, and
Hong
,
X.
,
2009
, “
Thermal Aware Placement in 3D ICs Using Quadratic Uniformity Modeling Approach
,”
Integr. VLSI J.
,
42
(
2
), pp.
175
180
.
21.
Kleiner
,
M. B.
,
Kuhn
,
S. A.
,
Ramm
,
P.
, and
Weber
,
W.
,
1995
, “
Thermal Analysis of Vertically Integrated Circuits
,”
International Electron Devices Meeting
(
IEDM
) Technical Digest, Libertyville, IL, Dec. 10–13, pp.
487
490
.
22.
Chiang
,
T.-Y.
,
Souri
,
S. J.
,
Chui
,
C. O.
, and
Saraswat
,
K. C.
,
2001
, “
Thermal Analysis of Heterogeneous 3-D ICs With Various Integration Scenarios
,”
International Electron Devices Meeting
(
IEDM
) Technical Digest, Washington, DC, Dec. 2–5, pp.
31.2.1
31.2.4
.
23.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
2002
, “
Temperature Solution in Multi-Dimensional Multi-Layer Bodies
,”
Int. J. Heat Mass Transfer
,
45
(
9
) pp.
1865
1877
.
24.
Cong
,
J.
,
Wei
,
J.
, and
Zhang
,
Y.
,
2004
, “
A Thermal-Driven Floorplanning Algorithm for 3D ICs
,”
IEEE/ACM International Conference on Computer Aided Design
(
ICCAD
), San Jose, CA, Nov. 7–11, pp.
306
313
.
25.
Geer
,
J.
,
Desai
,
J.
, and
Sammakia
,
B.
,
2007
, “
Heat Conduction in Multilayered Rectangular Domains
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
440
451
26.
Ayala
,
J. L.
,
Sridhar
,
A.
, and
Cuesta
,
D.
,
2010
, “
Thermal Modeling and Analysis of 3D Multi-Processor Chips
,”
Integr. VLSI J.
,
43
(
4
), pp.
327
341
.
27.
Choobineh
,
L.
, and
Jain
,
A.
,
2012
, “
Analytical Solution for Steady-State and Transient Temperature Field in Vertically Integrated Three-Dimensional Integrated Circuits (3D ICs)
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
12
), pp.
2031
2039
.
28.
Choobineh
,
L.
, and
Jain
,
A.
,
2013
, “
Determination of Temperature Distribution in Three-Dimensional Integrated Circuits (3D ICs) With Unequally-Sized Die
,”
Appl. Therm. Eng.
,
56
(
1
), pp.
176
184
.
29.
Choobineh
,
L.
, and
Jain
,
A.
,
2015
, “
An Explicit Analytical Model for Rapid Computation of Temperature Field in a Three-Dimensional Integrated Circuit (3D IC)
,”
Int. J. Therm. Sci.
,
87
, pp.
103
109
.
30.
Dogruoz
,
M. B.
,
2016
, “
Assessment of Joule Heating and Temperature Distribution on Printed Circuit Boards Via Electrothermal Simulations
,”
ASME J. Electron. Packag.
,
138
(
2
), p.
021004
.
31.
Wang
,
N.
,
Jin
,
Y.
,
Pi
,
Y.
, and
Wang
,
W.
,
2016
, “
A Full Chip Scale Numerical Simulation Method for Thermal Management of 3D IC
,”
17th International Conference on Electronic Packaging Technology
(
ICEPT
), Wuhan, China, Aug. 16–19, pp. 690–693.
32.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Thermophysical and Geometrical Effects on the Thermal Performance and Optimization of a Three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer
,
138
(
8
), p.
082101
.
33.
Jain
,
A.
,
Jones
,
R. E.
,
Chatterjee
,
R.
, and
Pozder
,
S.
,
2010
, “
Analytical and Numerical Modeling of the Thermal Performance of Three-Dimensional Integrated Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
56
63
.
34.
Haji-Sheikh
,
A.
,
Beck
,
J. V.
, and
Agonafer
,
D.
,
2003
, “
Steady-State Heat Conduction in Multi-Layer Bodies
,”
Int. J. Heat Mass Transfer
,
46
(
13
), pp.
2363
2379
.
35.
Rahman
,
A.
, and
Reif
,
R.
,
2001
, “
Thermal Analysis of Three-Dimensional (3-D) Integrated Circuits (ICs)
,”
IEEE International Interconnect Technology Conference
(
IITC
), Burlingame, CA, June 4–6, pp. 157–159.
36.
Oprins
,
H.
,
Cherman
,
V. O.
,
Vandevelde
,
B.
,
Van der Plas
,
G.
,
Marchal
,
P.
, and
Beyne
,
E.
,
2012
, “
Numerical and Experimental Characterization of the Thermal Behavior of a Packaged DRAM-on-Logic Stack
,”
IEEE 62nd Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 29–June 1, pp. 1081–1088.
37.
Li
,
J.-F.
, and
Wu
,
C.-W.
,
2010
, “
Is 3D Integration an Opportunity or Just a Hype?
,”
15th Asia and South Pacific Design Automation Conference
(
ASP-DAC
), Taipei, Taiwan, Jan. 18–21, pp. 541–543.
38.
Puttaswamy
,
K.
, and
Loh
,
G. H.
,
2006
, “
Thermal Analysis of a 3D Die-Stacked High-Performance Microprocessor
,”
16th ACM Great Lakes Symposium on VLSI
(
GLSVLSI
), Philadelphia, PA, Apr. 30–May 1, pp.
19
24
.
39.
Oprins
,
H.
,
Cherman
,
V.
,
Vandevelde
,
B.
,
Torregiani
,
C.
,
Stucchi
,
M.
,
Van derPlas
,
G.
,
Marchal
,
P.
, and
Beyne
,
E.
,
2011
, “
Characterization of the Thermal Impact of Cu-Cu Bonds Achieved Using TSVs on Hot Spot Dissipation in 3D Stacked ICs
,”
Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp. 861–868.
40.
Colgan
,
E. G.
,
Andry
,
P.
,
Dang
,
B.
,
Magerlein
,
J. H.
,
Maria
,
J.
,
Polastre
,
R. J.
, and
Wakil
,
J.
,
2012
, “
Measurement of Microbump Thermal Resistance in 3D Chip Stacks
,” 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
1
7
.
41.
Choobineh
,
L.
,
Vo
,
N.
,
Uehling
,
T.
, and
Jain
,
A.
,
2013
, “
Experimental Measurement of the Thermal Performance of a Two-Die 3D Integrated Circuit (3D IC)
,”
ASME
Paper No. IPACK2013-73167.
42.
Matsumoto
,
K.
,
Ibaraki
,
S.
,
Sueoka
,
K.
,
Sakuma
,
K.
,
Kikuchi
,
H.
,
Orii
,
Y.
, and
Yamada
,
F.
,
2011
, “
Experimental Thermal Resistance Evaluation of a Three-Dimensional (3D) Chip Stack
,” 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 20–24, pp. 125–130.
43.
Bozorg-Grayeli
,
E.
,
Reifenberg
,
J. P.
,
Asheghi
,
M.
,
Wong
,
H. S. P.
, and
Goodson
,
K. E.
,
2013
, “
Thermal Transport in Phase Change Memory Materials
,”
Annu. Rev. Heat Transfer.
,
16
(
1
), pp.
397
428
.
44.
Yovanovich
,
M.
,
2005
, “
Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
182
206
.
45.
Joiner
,
B.
,
Montes de Oca
,
J. A.
, and
Neelakantan
,
S.
,
2009
, “
Measurement and Simulation of Stacked Die Thermal Resistances
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp. 709–715.
46.
Hahn
,
D. W.
, and
Özisik
,
M. N.
,
2012
,
Heat Conduction
, 3rd ed.,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.