Abstract

Studies on carbon nanotubes (CNT), Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water production. This work for the first time reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane (PU) membrane with immobilized activated carbon and CNT. A simulated solar light of 1 kW ∼1 sun was used. The rate of evaporation, temporal and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality, and salinity were performed. Experimental evidence showed that activated carbon has potential in water purification. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 vol %. We also obtained a 160% increase in steam production rate at 60% concentration of activated carbon when compared with de-ionized water.

References

1.
Stevović
,
U. I.
,
Mirjanić
,
D.
, and
Stevović
,
S.
,
2019
, “
Possibilities for Wider Investment in Solar Energy Implementation
,”
Energy
,
180
, pp.
495
510
.10.1016/j.energy.2019.04.194
2.
Lin
,
Y.
,
Jia
,
Y.
,
Alva
,
G.
, and
Fang
,
G.
,
2018
, “
Review on Thermal Conductivity Enhancement, Thermal Properties, and Applications of Phase Change Materials in Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
82
(
Pt. 3
), pp.
2730
2742
.10.1016/j.rser.2017.10.002
3.
Wahab
,
A.
,
Hassan
,
A.
,
Qasim
,
M. A.
,
Muhammad Ali
,
H.
,
Babar
,
H.
, and
Sajid
,
M. U.
,
2019
, “
Solar Energy Systems—Potential of Nanofluids
,”
J. Mol. Liq.
,
289
, p.
111049
.10.1016/j.molliq.2019.111049
4.
Muhammad
,
A.
,
Ratlamwala
,
T. A. H.
, and
Atikol
,
U.
,
2017
, “
Solar Assisted Multi-Generation System Using Nanofluids: A Comparative Analysis
,”
Int. J. Hydrogen Energy
,
42
(
33
), pp.
21429
21442
.
5.
Bashirpour Bonab
,
H.
, and
Javani
,
N.
,
2019
, “
Investigation and Optimization of Solar Volumetric Absorption Systems Using Nanoparticles
,”
Sol. Energy Mater., Sol. Cells
,
194
, pp.
229
234
.10.1016/j.solmat.2019.02.019
6.
Khanafer
,
K.
, and
Vafai
,
K.
,
2018
, “
A Review on the Applications of Nanofluids in the Solar Energy Field
,”
Renewable Energy
,
123
, p.
398
.10.1016/j.renene.2018.01.097
7.
Arthur
,
O.
, and
Karim
,
M. A.
,
2016
, “
An Investigation Into the Thermophysical and Rheological Properties of Nanofluids for Solar Thermal Applications
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
739
755
.10.1016/j.rser.2015.10.065
8.
Fuskele
,
V.
, and
Sarviya
,
R. M.
,
2017
, “
Recent Developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids
,”
Mater. Today: Proc.
,
4
(
2 Pt. A
), pp.
4049
4060
.10.1016/j.matpr.2017.02.307
9.
Bhalla
,
V.
, and
Tyagi
,
H.
,
2018
, “
Parameters Influencing the Performance of Nanoparticles-Laden Fluid-Based Solar Thermal Collectors: A Review on Optical Properties
,”
Renewable Sustainable Energy Rev.
,
84
, pp.
12
42
.10.1016/j.rser.2017.12.007
10.
Janas
,
D.
,
Kreft
,
S. K.
, and
Koziol
,
K. K. K.
,
2015
, “
Steam Reforming on Reactive Carbon Nanotube Membranes
,”
J. Ind. Eng. Chem.
,
25
, pp.
222
228
.10.1016/j.jiec.2014.10.038
11.
Sharma
,
B.
, and
Rabinal
,
M. K.
,
2017
, “
Plasmon Based Metal-Graphene Nanocomposites for Effective Solar Vaporization
,”
J. Alloys Compd.
,
690
, pp.
57
62
.10.1016/j.jallcom.2016.07.330
12.
Wang
,
Z.
,
Quan
,
X.
,
Zhang
,
Z.
, and
Cheng
,
P.
,
2018
, “
Optical Absorption of Carbon-Gold Core-Shell Nanoparticles
,”
J. Quant. Spectrosc. Radiat. Transfer
,
205
, pp.
291
298
.10.1016/j.jqsrt.2017.08.001
13.
Fan
,
D.
,
Li
,
Q.
,
Chen
,
W.
, and
Zeng
,
J.
,
2017
, “
Graphene Nanofluids Containing Core-Shell Nanoparticles With Plasmon Resonance Effect Enhanced Solar Energy Absorption
,”
Sol. Energy
,
158
, pp.
1
8
.10.1016/j.solener.2017.09.031
14.
Wang
,
X.
,
He
,
Y.
,
Liu
,
X.
,
Shi
,
L.
, and
Zhu
,
J.
,
2018
, “Investigation of Photothermal Heating Enabled by Plasmonic Nanofluids for Direct Solar Steam Generation,”
Sol. Energy
,
157
, pp.
35
46
.10.1016/j.solener.2017.08.015
15.
Fu
,
Y.
,
Mei
,
T.
,
Wang
,
G.
,
Guo
,
A.
,
Dai
,
G.
,
Wang
,
S.
,
Wang
,
J.
,
Li
,
J.
, and
Wang
,
X.
,
2017
, “
Investigation on Enhancing Effects of Au Nanoparticles on Solar Steam Generation in Graphene Oxide Nanofluids
,”
Appl. Therm. Eng.
,
114
, pp.
961
968
.10.1016/j.applthermaleng.2016.12.054
16.
Shi
,
L.
,
He
,
Y.
,
Huang
,
Y.
, and
Jiang
,
B.
,
2019
, “
Recyclable Fe3O4@CNT Nanoparticles for High-Efficiency Solar Vapor Generation
,”
Energy Convers. Manage.
,
149
, pp.
401
408
.
17.
Wang
,
X.
,
He
,
Y.
,
Liu
,
X.
, and
Zhu
,
J.
,
2020
, “
Enhanced Direct Steam Generation Via a Bio-Inspired Solar Heating Method Using Carbon Nanotube Films
,”
Powder Technol.
,
321
, pp.
276
285
.
18.
Jin
,
H.
,
Lin
,
G.
,
Bai
,
L.
,
Zeiny
,
A.
, and
Wen
,
D.
,
2016
, “
Steam Generation in a Nanoparticle-Based Solar Receiver
,”
Nano Energy
,
28
, pp.
397
406
.10.1016/j.nanoen.2016.08.011
19.
Li
,
H.
,
He
,
Y.
,
Liu
,
Z.
,
Huang
,
Y.
, and
Jiang
,
B.
,
2021
, “
Synchronous Steam Generation and Heat Collection in a Broadband Ag@TiO2 Core–Shell Nanoparticle-Based Receiver
,”
Appl. Therm. Eng.
,
121
, pp.
617
627
.
20.
Huang
,
J.
,
He
,
Y.
,
Chen
,
M.
,
Jiang
,
B.
, and
Huang
,
Y.
,
2017
, “
Solar Evaporation Enhancement by a Compound Film Based on Au@TiO2 Core–Shell Nanoparticles
,”
Sol. Energy
,
155
, pp.
1225
1232
.10.1016/j.solener.2017.07.070
21.
Wei
,
H.
,
Hu
,
H.
,
Chang
,
M.
,
Zhang
,
Y.
,
Chen
,
D.
, and
Wang
,
M.
,
2017
, “
Improving Solar Thermal Absorption of an Anodic Aluminum Oxide-Based Photonic Crystal With Cu-Ni Composite Nanoparticles
,”
Ceram. Int.
,
43
(
15
), pp.
12472
12479
.10.1016/j.ceramint.2017.06.117
22.
Wang
,
G.
,
Fu
,
Y.
,
Ma
,
X.
,
Pi
,
W.
,
Liu
,
D.
, and
Wang
,
X.
,
2017
, “
Reusable Reduced Graphene Oxide Based Double-Layer System Modified by Polyethylenimine for Solar Steam Generation
,”
Carbon
,
114
, pp.
117
124
.10.1016/j.carbon.2016.11.071
23.
Ni
,
G.
,
Miljkovic
,
N.
,
Ghasemi
,
H.
,
Huang
,
X.
,
Boriskina
,
S. V.
,
Lin
,
C.-T.
,
Wang
,
J.
,
Xu
,
Y.
,
Mahfuzur Rahman
,
M.
,
Zhang
,
T.
, and
Chen
,
G.
,
2015
, “
Volumetric Solar Heating of Nanofluids for Direct Vapor Generation
,”
Nano Energy
,
17
, pp.
290
301
.10.1016/j.nanoen.2015.08.021
24.
Wang
,
X.
,
He
,
Y.
,
Cheng
,
G.
,
Shi
,
L.
,
Liu
,
X.
, and
Zhu
,
J.
,
2016
, “
Direct Vapor Generation Through Localized Solar Heating Via Carbon-Nanotube Nanofluid
,”
Energy Convers. Manage.
,
130
, pp.
176
183
.10.1016/j.enconman.2016.10.049
25.
Gómez-Villarejo
,
R.
,
Martín
,
E. I.
,
Navas
,
J.
,
Sánchez-Coronilla
,
A.
,
Aguilar
,
T.
,
Gallardo
,
J. J.
,
Alcántara
,
R.
,
De los Santos
,
D.
,
Carrillo-Berdugo
,
I.
, and
Fernández-Lorenzo
,
C.
,
2017
, “
Ag-Based Nanofluidic System to Enhance Heat Transfer Fluids for Concentrating Solar Power: Nano-Level Insights
,”
Appl. Energy
,
194
, pp.
19
29
.10.1016/j.apenergy.2017.03.003
26.
Ma
,
S.
,
Chiu
,
C. P.
,
Zhu
,
Y.
,
Tang
,
C. Y.
,
Long
,
H.
,
Qarony
,
W.
,
Zhao
,
X.
,
Zhang
,
X.
,
Lo
,
W. H.
, and
Tsang
,
Y. H.
,
2017
, “
Recycled Waste Black Polyurethane Sponges for Solar Vapor Generation and Distillation
,”
Appl. Energy
,
206
, pp.
63
69
.10.1016/j.apenergy.2017.08.169
27.
Huang
,
J.
,
He
,
Y.
,
Wang
,
L.
,
Huang
,
Y.
, and
Jiang
,
B.
,
2017
, “
Bifunctional Au@TiO2 Core–Shell Nanoparticle Films for Clean Water Generation by Photocatalysis and Solar Evaporation
,”
Energy Convers. Manage.
,
132
, pp.
452
459
.10.1016/j.enconman.2016.11.053
28.
Wang
,
X.
,
He
,
Y.
,
Liu
,
X.
,
Cheng
,
G.
, and
Zhu
,
J.
,
2017
, “
Solar Steam Generation Through Bio-Inspired Interface Heating of Broadband-Absorbing Plasmonic Membranes
,”
Appl. Energy
,
195
, pp.
414
425
.10.1016/j.apenergy.2017.03.080
29.
Badenhorst
,
H.
,
2018
, “
A Review of the Application of Carbon Materials in Solar Thermal Energy Storage
,”
Sol. Energy
, in press.
30.
Xiao
,
S.-X.
,
Huang
,
C.-S.
, and
Li
,
Y.-L.
,
2017
, “
Chapter 16 - Carbon Materials
,”
Modern Inorganic Synthetic Chemistry
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
429
462
.
31.
Dante
,
R. C.
,
2016
, “
7 - Carbon Materials
,”
Handbook of Friction Materials and Their Applications
,
Woodhead Publishing
,
Boston, MA
, pp.
93
103
.
32.
Ueki
,
Y.
,
Aoki
,
T.
,
Ueda
,
K.
, and
Shibahara
,
M.
,
2017
, “
Thermophysical Properties of Carbon-Based Material Nanofluid
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1130
1134
.10.1016/j.ijheatmasstransfer.2017.06.008
33.
dos Santos
,
M. C.
,
Maynart
,
M. C.
,
Aveiro
,
L. R.
,
da Paz
,
E. C.
, and
Pinheiro
,
V. D. S.
,
2017
, “
Carbon-Based Materials: Recent Advances, Challenges, and Perspectives
,”
Reference Module in Materials Science and Materials Engineering
, Federal University of ABC, Santo André, Brazil.
34.
Liu
,
X.
,
Huang
,
J.
,
Wang
,
X.
,
Cheng
,
G.
, and
He
,
Y.
,
2017
, “
Investigation of Graphene Nanofluid for High Efficient Solar Steam Generation
,”
Energy Procedia
,
142
, pp.
350
355
.10.1016/j.egypro.2017.12.055
35.
Wang
,
X.
,
He
,
Y.
,
Liu
,
X.
, and
Zhu
,
J.
,
2017
, “
Enhanced Direct Steam Generation Via a Bio-Inspired Solar Heating Method Using Carbon Nanotube Films
,”
Powder Technol.
,
321
, pp.
276
285
.10.1016/j.powtec.2017.08.027
36.
Shi
,
L.
,
He
,
Y.
,
Huang
,
Y.
, and
Jiang
,
B.
,
2017
, “
Recyclable Fe3O4@CNT Nanoparticles for High-Efficiency Solar Vapor Generation
,”
Energy Convers. Manage.
,
149
, pp.
401
408
.10.1016/j.enconman.2017.07.044
37.
Li
,
H.
,
He
,
Y.
,
Liu
,
Z.
,
Huang
,
Y.
, and
Jiang
,
B.
,
2017
, “
Synchronous Steam Generation and Heat Collection in a Broadband Ag@TiO2 Core–Shell Nanoparticle-Based Receiver
,”
Appl. Therm. Eng.
,
121
, pp.
617
627
.10.1016/j.applthermaleng.2017.04.102
38.
Neumann
,
O.
,
Urban
,
A. S.
,
Day
,
J.
,
Lal
,
S.
,
Nordlander
,
P.
, and
Halas
,
N. J.
,
2013
, “
Solar Vapor Generation Enabled by Nanoparticles
,”
ACS Nano
,
7
(
1
), pp.
42
49
.10.1021/nn304948h
39.
Xu
,
L.
,
Li
,
J.
, and
Zhang
,
M.
,
2015
, “
Adsorption Characteristics of a Novel Carbon-Nanotube-Based Composite Adsorbent Toward Organic Pollutants
,”
Ind. Eng. Chem. Res
,
54
(
8
), pp.
2379
2384
.10.1021/ie5041379
40.
Rikta
,
S. Y.
,
2019
, “
9—Application of Nanoparticles for Disinfection and Microbial Control of Water and Wastewater
,”
Micro and Nano Technologies, Nanotechnology in Water and Wastewater Treatment
,
A.
Ahsan
, and
A.
Fauzi Ismail
, eds.,
Elsevier
,
Amsterdam, Netherlands
, pp.
159
176
.
41.
Siriwardane
,
R. V.
,
Shen
,
M.-S.
,
Fisher
,
E. P.
, and
Poston
,
J. A.
,
2001
, “
Adsorption of CO2 on Molecular Sieves and Activated Carbon
,”
Energy Fuels
,
15
(
2
), pp.
279
284
.10.1021/ef000241s
42.
Guillossou
,
R.
,
Le Roux
,
J.
,
Mailler
,
R.
,
Vulliet
,
E.
,
Morlay
,
C.
,
Nauleau
,
F.
,
Gasperi
,
J.
, and
Rocher
,
V.
,
2019
, “
Organic Micropollutants in a Large Wastewater Treatment Plant: What Are the Benefits of an Advanced Treatment by Activated Carbon Adsorption in Comparison to Conventional Treatment?
,”
Chemosphere
,
218
, pp.
1050
1060
. pp10.1016/j.chemosphere.2018.11.182
43.
Han
,
Z.
,
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Science
,
36
, pp.
914
944
. 10.1016/j.progpolymsci.2010.11.004
You do not currently have access to this content.