A comprehensive stochastic model is proposed to predict Package-on-Package (PoP) stacking yield loss. The model takes into account all pad locations at the stacking interface while considering the statistical variations of the warpages and the solder ball heights of both top and bottom packages. The goal is achieved by employing three statistical methods: (1) an advanced approximate integration-based method called eigenvector dimension reduction (EDR) method to conduct uncertainty propagation (UP) analyses, (2) the stress-strength interference (SSI) model to determine the noncontact probability at a single pad, and (3) the union of events considering the statistical dependence to calculate the final yield loss. In this first part, theoretical development of the proposed stochastic model is presented. Implementation of the proposed model is presented in a companion paper.

References

1.
Loh
,
W. K.
,
Kulterman
,
R.
,
Purdie
,
T.
,
Fu
,
H.
, and
Tsuriya
,
M.
,
2015
, “
Recent Trend of Package Warpage Characteristic
,”
International Conference on Electronics Packaging and iMAPS All Asia Conference
(
ICEP-IACC
),
Kyoto, Japan
,
Apr. 14–17
, pp.
233
238
.
2.
Vijayaragavan
,
N.
,
Carson
,
F.
, and
Mistry
,
A.
,
2008
, “
Package on Package Warpage-Impact on Surface Mount Yields and Board Level Reliability
,”
58th Electronic Components and Technology Conference
(
ECTC
),
Lake Buena Vista, FL
,
May 27–30
, pp.
389
396
.
3.
Ishibashi
,
K.
,
2007
, “
PoP (Package-on-Package) Stacking Yield Loss Study
,”
57th Electronic Components and Technology Conference
(
ECTC
),
Reno, NV
,
May 29–June 1
, pp.
1403
1408
.
4.
Xie
,
D.
,
Geiger
,
D.
,
Shangguan
,
D.
,
Hu
,
B.
, and
Sjoberg
,
J.
,
2008
, “
Yield Study of Inline Package on Package (PoP) Assembly
,”
10th Electronics Packaging Technology Conference
(
EPTC
),
Singapore
,
Dec. 9–12
, pp.
1202
1208
.
5.
Xie
,
D.
,
Shangguan
,
D.
,
Geiger
,
D.
,
Gill
,
D.
,
Vellppan
,
V.
, and
Chinniah
,
K.
,
2009
, “
Head in Pillow (HIP) and Yield Study on SIP and PoP Assembly
,” 59th Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 26–29, pp.
752
758
.
6.
Huang
,
C.-Y.
,
2013
, “
Package-on-Package Assembly Yield Assessment in the ODM/EMS Environment Using Monte Carlo Simulation
,”
IEEE Trans. Compon., Packag, Manuf. Technol.
,
3
(
9
), pp.
1611
1620
.
7.
Huang
,
C.-Y.
,
2017
, “
Applying Monte Carlo Simulation to Analyze the Open Scenario in the Assembly of Electronic Components
,”
IEEE Trans. Compon., Packag, Manuf. Technol.
,
7
(
11
), pp.
1911
1919
.
8.
Katahira
,
T.
,
Scanlan
,
J.
,
Park
,
J.
, and
Oh
,
K.
,
2007
, “
0.3 mm Pitch CSP/BGA Development for Mobile Terminals
,” 40th International Symposium on Microelectronics (IMAPS 2007), San Jose, CA, Nov. 11–15, pp.
393
401
.
9.
Rubino
,
G.
, and
Tuffin
,
B.
,
2009
,
Rare Event Simulation Using Monte Carlo Methods
,
Wiley
, New York.
10.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1999
, “
Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size
,”
J. Aircr.
,
36
(
1
), pp.
275
286
.
11.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.
12.
Wei
,
H.-P.
,
Han
,
B.
,
Youn
,
B. D.
,
Shin
,
H.
,
Kim
,
I.
, and
Moon
,
H.
,
2017
, “
Assembly Yield Prediction of Plastically Encapsulated Packages With a Large Number of Manufacturing Variables by Advanced Approximate Integration Method
,”
Microelectron. Reliab.
,
78
, pp.
319
330
.
13.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
14.
Sundararajan
,
C.
, and
Witt
,
F.
,
1995
, “
Stress-Strength Interference Method
,”
Probabilistic Structural Mechanics Handbook: Theory and Industrial Applications
, Springer, Boston, MA, pp.
8
26
.
15.
Basu
,
A. P.
,
2007
, “
Stress–Strength Model
,”
Encyclopedia of Statistics in Quality and Reliability
, Wiley, Hoboken, NJ.
16.
Petrov
,
V. V.
,
2012
,
Sums of Independent Random Variables
,
Springer Science & Business Media
, Berlin.
17.
Puri
,
P. S.
,
1966
, “
Probability Generating Functions of Absolute Difference of Two Random Variables
,”
Proc. Natl. Acad. Sci. U. S. A.
, 56(4), pp.
1059
1061
.
18.
Springer
,
M. D.
,
1979
, “
The Algebra of Random Variables
,” Wiley, New York.
19.
Cox
,
D. R.
, and
Wermuth
,
N.
,
1996
,
Multivariate Dependencies: Models, Analysis and Interpretation
,
Chapman & Hall
, Boca Raton, FL.
20.
Kumar
,
P.
,
2010
, “
Probability Distributions and Estimation of Ali-Mikhail-Haq Copula
,”
Appl. Math. Sci.
,
4
(14), pp. 657–666.
21.
Taylor
,
C. R.
,
1990
, “
Two Practical Procedures for Estimating Multivariate Nonnormal Probability Density Functions
,”
Am. J. Agric. Econ.
,
72
(
1
), pp. 210–217.
22.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp. 219–241.
23.
Bogart
,
K.
, and
Stein
,
C.
,
2002
, “
Discrete Math in Computer Science
,” Department of Computer Mathematics and Department of Computer Science. Dartmouth College, Hanover, NH.
You do not currently have access to this content.