Abstract

Many microelectromechanical systems (MEMS) devices generate large deflections and stresses under some severe loads, and this cumulative stress often causes structural fatigue when applying high cyclic loads. It affects the reliability and quality of the product and can easily damage structures in harsh environments. For example, accelerometers and gyroscopes in motion sensors always combine a movable mass component with a bending or torsion spring, which can severely deform their structure at some large accelerations or angular accelerations. After this high cycle of deformation, the spring structure will be damaged and cause device failure, we call this failure mode high cycle fatigue (HCF). This is very common for MEMS products, but it is difficult for designers to predict it at design stage. To prevent early fatigue problems and reduce product development time, we developed a simulation process and empirical prediction model to help designers predict HCF and improve fatigue strength of moving structures used in MEMS devices. In this study, a bending and a torsion beam are used as test vehicles. A combination of dynamic and electromechanical coupling simulations was developed and applied to analyze the effects of frequency under HCF testing. The test structures were fabricated using silicon-on-insulator (SOI) MEMS technique and these test structures were used to validate empirical life prediction equation developed in this research. The frequency effect of HCF was also to be included in the developed prediction model. Based on the test results, the accuracy of the empirical prediction equation is improved by including frequency effect.

References

1.
Chia-Cheng
,
C.
,
Hung-Te
,
Y.
,
Yen-Fu
,
S.
,
Yu-Ting
,
H.
, and
Kuo-Ning
,
C.
,
2016
, “
A Method to Compensate Packaging Effects on three-axis MEMS Accelerometer
,”
15th IEEE Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas, TX
,
May 31–June 3
, pp.
536
538
.10.1109/ITHERM.2016.7517594
2.
Caspani
,
A.
,
Comi
,
C.
,
Corigliano
,
A.
,
Langfelder
,
G.
,
Zega
,
V.
, and
Zerbini
,
S.
,
2014
, “
Dynamic Nonlinear Behavior of Torsional Resonators in MEMS
,”
J. Micromech. Microeng.
,
24
(
9
), p.
095025
.10.1088/0960-1317/24/9/095025
3.
Demirci
,
M. U.
, and
Nguyen
,
C. T. C.
,
2003
, “
Higher-Mode Free-Free Beam Micromechanical Resonators
,”
IEEE International Frequency Control Symposium
, Tampa, FL, May 5–8, pp.
810
818
.10.1109/FREQ.2003.1275195
4.
Stefano
,
M.
,
Aldo
,
G.
,
Alberto
,
C.
,
Roberto
,
M.
, and
Barbara
,
S.
,
2011
, “
Two-Scale Simulation of Drop-Induced Failure of Polysilicon MEMS Sensors
,”
Sensors
,
11
, pp.
4972
4989
.10.3390/s110504972
5.
Hong
,
Y.-T.
,
2016
, “
Assessment on Effective Mechanical Properties of MEMS Capacitance Type Accelerometer Using Voltage Measurement Technique
,” Master thesis, National Tsing Hua University, Hsinchu, Taiwan.
6.
Maarten
,
P. D B.
,
Brian
,
D. J.
, and
Fernando
,
B.
,
1999
, “
A Small-Area In-Situ MEMS Test Structure to Measure Fracture Strength by Electrostatic Probing
,”
SPIE Proc.
,
3875
, pp.
97
103
.10.1117/12.360459
7.
Pasquale
,
G. D.
, and
Somà
,
A.
,
2011
, “
MEMS Mechanical Fatigue: Effect of Mean Stress on Gold Microbeams
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
1054
1063
.10.1109/JMEMS.2011.2160044
8.
Pasquale
,
G. D.
, and
Somà
,
A.
,
2013
, “
Experimental Methods for the Characterization of Fatigue in Microstructures
,”
Fract. Struct. Integr.
,
7
(
23
) pp.
114
126
.10.3221/IGF-ESIS.23.12
9.
Liu
,
H. K.
,
Pan
,
C. H.
, and
Liu
,
P. P.
,
2008
, “
Dimension Effect on Mechanical Behavior of Silicon Micro-Cantilever Beams
,”
Measurement
,
41
(
8
), pp.
885
895
.10.1016/j.measurement.2007.12.007
10.
Liu
,
H. K.
,
Lee
,
B. J.
, and
Liu
,
P. P.
,
2007
, “
Low Cycle Fatigue of Single Crystal Silicon Thin Films
,”
Sens. Actuators A
,
140
(
2
), pp.
257
265
.10.1016/j.sna.2007.06.029
11.
Hocheng
,
H.
,
Hung
,
J. N.
, and
Guu
,
Y. H.
,
2008
, “
Various Fatigue Testing of Polycrystalline Silicon Microcantilever Beam in Bending
,”
Jpn. J. Appl. Phys.
,
47
(
6
), pp.
5256
5261
.10.1143/JJAP.47.5256
12.
Hung
,
J. N.
, and
Hocheng
,
H.
,
2012
, “
Frequency Effects and Life Prediction of Polysilicon Microcantilever Beams in Bending Fatigue
,”
SPIE Proc.
,
11
(
2
), p.
021206
.10.1117/1.JMM.11.2.021206
13.
Hsu
,
S. T.
,
Wolter
,
A.
,
Owe
,
W. D.
, and
Schenk
,
H.
,
2007
, “
Fracture Strength of SOI Springs in MEMS Micromirrors
,”
SPIE Proc.
,
6466
, p.
64660E
.10.1117/12.698933
14.
Chuang
,
W. H.
,
Fettig
,
R. K.
, and
Ghodssi
,
R.
,
2005
, “
An Electrostatic Actuator for Fatigue Testing of Low-Stress LPCVD Silicon Nitride Films
,”
Sens. Actuators A
,
121
(
2
), pp.
557
565
.10.1016/j.sna.2005.03.026
15.
Tanner
,
D. M.
,
Miller
,
W. M.
,
Peterson
,
K. A.
,
Dugger
,
M. T.
,
Eaton
,
W. P.
,
Irwin
,
L. W.
,
Senft
,
D. C.
,
Smith
,
N. F.
,
Tangyunyong
,
P.
, and
Miller
,
S. L.
,
1999
, “
Frequency Dependence of the Lifetime of a Surface Micromachined Microengine Driving a Load
,”
Microelectron. Reliab.
,
39
(
3
), pp.
401
414
.10.1016/S0026-2714(98)00248-0
16.
Muhlstein
,
C. L.
,
Brown
,
S. B.
, and
Ritchie
,
R. O.
,
2001
, “
High-Cycle Fatigue of Single-Crystal Silicon Thin Films
,”
J. Microelectromech. Syst.
,
10
(
4
), p.
593
.10.1109/84.967383
17.
Baumert
,
E. K.
,
Baumert
,
P.-O.
, and
ierron
,
O. N. P.
,
2010
, “
Investigation of the Low-Cycle Fatigue Mechanism for Micron-Scale Monocrystalline Silicon Films
,”
Acta Mater.
,
58
(
8
), pp.
2854
2863
.10.1016/j.actamat.2010.01.011
18.
Bagdahn
,
J.
, and
Sharpe
,
W. N.
, Jr.
,
2003
, “
Fatigue of Polycrystalline Silicon Under Long-Term Cyclic Loading
,”
Sens. Actuators A
,
103
(
1–2
), pp.
9
15
.10.1016/S0924-4247(02)00328-X
19.
Namazu
,
T.
, and
Isono
,
Y.
,
2004
, “
High-Cycle Fatigue Damage Evaluation for Micro-Nanoscale Single Crystal Silicon Under Bending and Tensile Stressing
,”
17th International IEEE Micro Electro Mechanical Systems
, Maastricht, The Netherlands, Jan. 25–29, pp.
149
152
.10.1109/MEMS.2004.1290544
20.
Chang
,
C.-C.
,
Lin
,
S.-D.
, and
Chiang
,
K.-N.
,
2018
, “
Development of a High Cycle Fatigue Life Prediction Model for Thin Film Silicon Structures
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031008
.10.1115/1.4040297
21.
Wu
,
K. C.
, and
Chiang
,
K. N.
,
2016
, “
Characterization on Acceleration-Factor Equation for Packaging-Solder Joint Reliability
,”
Microelectron. Reliab.
,
65
, pp.
167
172
.10.1016/j.microrel.2016.08.005
22.
Lee
,
C. H.
,
Wu
,
K. C.
, and
Chiang
,
K. N.
,
2017
, “
A Novel Acceleration-Factor Equation for Packaging-Solder Joint Reliability Assessment at Different Thermal Cyclic Loading Rates
,”
J. Mech.
,
31
(
1
), pp.
35
40
.
23.
Su
,
Y. F.
,
Liang
,
S. Y.
, and
Chiang
,
K. N.
,
2017
, “
Design and Reliability Assessment of Novel 3D-IC Packaging
,”
J. Mech.
,
33
(
2
), pp.
193
203
.10.1017/jmech.2016.82
24.
Ramachandran
,
V.
,
Wu
,
K. C.
, and
Chiang
,
K. N.
,
2018
, “
Overview Study of Solder Joint Reliability Due to Creep Deformation
,”
J. Mech.
,
34
(
5
), pp.
637
643
.10.1017/jmech.2018.20
25.
Coffin
,
L. F.
, Jr.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
,
76
, pp.
931
950
.
26.
Ikehara
,
T.
, and
Tsuchiya
,
T.
,
2016
, “
Crystal Orientation-Dependent Fatigue Characteristics in Micrometer-Sized Single-Crystal Silicon
,”
Microsyst. Nanoeng.
,
2
, p.
16027
.10.1038/micronano.2016.27
27.
Artz
,
B. E.
, and
Cathey
,
L. W.
,
1992
, “
A Finite Element Method for Determining Structural Displacements Resulting From Electrostatic Forces
,”
Fifth Technical Digest Solid-State Sensor and Actuator Workshop
, Hilton Head Island, CA, June 22–25, pp.
190
193
.10.1109/SOLSEN.1992.228295
28.
Joseph
,
E. S.
, and
Charles
,
R. M.
,
2003
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.