Abstract

The conventional capillary underfill process has been a common practice in the industry, somehow the process is costly and time-consuming. Thus, no-flow underfill process is developed to increase the effective lead time production since it integrates the simultaneous reflow and cure of the solder interconnect and underfill. This paper investigates the effect of different dispense patterns of no-flow underfill process by mean of numerical and experimental method. Finite volume method (FVM) was used for the three-dimensional (3D) simulation to simulate the compression flow of the no-flow underfill. Experiments were carried out to complement the simulation validity and the results from both studies have reached a good agreement. The findings show that of all three types of dispense patterns, the combined shape dispense pattern shows better chip filling capability. The dot pattern has the highest velocity and pressure distribution with values of 0.0172 m/s and 813 Pa, respectively. The high-pressure region is concentrated at the center of the chip and decreases out toward the edge. Low in pressure and velocity flow factor somehow lead to issue associated with possibility of incomplete filling or void formation. Dot dispense pattern shows less void formation since it produces high-pressure underfill flow within the ball grid array (BGA). This paper provides reliable insight into the industry to choose the best dispense pattern of recently favorable no-flow underfill process.

References

1.
Zhang
,
Z.
, and
Wong
,
C. P.
,
2002
, “
Novel Filled No-Flow Underfill Materials and Process
,”
Proceedings of the Eighth International Advanced Packaging Materials Symposium
,
Stone Mountain, GA
, Mar. 3–6, pp.
201
209
.10.1109/ISAPM.2002.990387
2.
Ng
,
F. C.
,
Abas
,
M. A.
, and
Abdullah
,
M. Z.
,
2019
, “
Filling Efficiency of Flip-Chip Underfill Encapsulation Process
,”
Solder. Surf. Mount Technol.
,
32
(
1
), pp.
10
18
.10.1108/SSMT-07-2019-0026
3.
Ng
,
F. C.
,
Ali
,
M. Y. T.
,
Abas
,
A.
,
Khor
,
C. Y.
,
Samsudin
,
Z.
, and
Abdullah
,
M. Z.
,
2019
, “
A Novel Analytical Filling Time Chart for Design Optimization of Flip-Chip Underfill Encapsulation Process
,”
Int. J. Adv. Manuf. Technol.
,
105
(
7–8
), pp.
3521
3530
.10.1007/s00170-019-04573-6
4.
Colella
,
M.
, and
Baldwin
,
D.
,
2004
, “
Void Free Processing of Flip Chip on Board Assemblies Using No-Flow Underfills
,”
Proceedings of the International Symposium on Advanced Packaging Materials: Processes Properties and Interfaces
, Vol.
9
,
Atlanta, GA
, Mar. 24–26, pp.
272
281
.10.1109/ISAPM.2004.1288026
5.
Colella
,
M.
, and
Baldwin
,
D.
,
2004
, “
Near Void Free Hybrid No-Flow Underfill Flip Chip Process Technology
,”
Proceedings. 54th Electronic Components and Technology Conference
, Vol.
1
,
Las Vegas, NV
, June 1–4, pp.
780
788
.10.1109/ECTC.2004.1319426
6.
Lee
,
S.
,
Yim
,
M. J.
,
Master
,
R. N.
,
Wong
,
C. P.
, and
Baldwin
,
D. F.
,
2009
, “
Near Void-Free Assembly Development of Flip Chip Using No-Flow Underfill
,”
IEEE Trans. Electron. Packag. Manuf.
,
32
(
2
), pp.
106
114
.10.1109/TEPM.2009.2015592
7.
Lau
,
C. S.
,
Abdullah
,
M. Z.
,
Abdul Mujeebu
,
M.
, and
Yusop
,
N. M.
,
2014
, “
Finite Element Analysis on the Effect of Solder Joint Geometry for the Reliability of Ball Grid Array Assembly With Flexible and Rigid PCBS
,”
J. Eng. Sci. Technol.
,
9
(
1
), pp.
47
63
.https://bit.ly/3o0oyby
8.
Katsurayama
,
S.
, and
Tohmyoh
,
H.
,
2013
, “
Effect of the Thermomechanical Properties of No-Flow Underfill Materials on Interconnect Reliability
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
3
), pp.
370
376
.10.1109/TCPMT.2012.2236838
9.
Lee
,
C. C.
,
Chang
,
K. C.
, and
Yang
,
Y. W.
,
2009
, “
Lead-Free Solder Joint Reliability Estimation of Flip Chip Package Using FEM-Based Sensitivity Analysis
,”
Solder Surf. Mount Technol.
,
21
(
1
), pp.
31
41
.10.1108/09540910910928283
10.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2018
, “
Effect of Solder Bump Shapes on Underfill Flow in Flip-Chip Encapsulation Using Analytical, Numerical and PIV Experimental Approaches
,”
Microelectron. Reliab.
,
81
(
2017
), pp.
41
63
.10.1016/j.microrel.2017.12.025
11.
Abas
,
A.
,
Haslinda
,
M. S.
,
Ishak
,
M. H. H.
,
Nurfatin
,
A. S.
,
Abdullah
,
M. Z.
, and
Che Ani
,
F.
,
2016
, “
Effect of ILU Dispensing Types for Different Solder Bump Arrangements on CUF Encapsulation Process
,”
Microelectron. Eng.
,
163
, pp.
83
97
.10.1016/j.mee.2016.06.010
12.
Ong
,
E. E. S.
,
Abdullah
,
M. Z.
,
Khor
,
C. Y.
,
Leong
,
W. C.
,
Loh
,
W. K.
,
Ooi
,
C. K.
, and
Chan
,
R.
,
2013
, “
Numerical Modeling and Analysis of Microbump Pitch Effect in 3D IC Package With TSV During Molded Underfill (MUF)
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
2
), pp.
210
222
.10.1080/19942060.2013.11015465
13.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2009
, “
Numerical Modeling for the Underfill Flow in Flip-Chip Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
227
234
.10.1109/TCAPT.2009.2014355
14.
Khor
,
C. Y.
,
Abdul Mujeebu
,
M.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2010
, “
Finite Volume Based CFD Simulation of Pressurized Flip-Chip Underfill Encapsulation Process
,”
Microelectron. Reliab.
,
50
(
1
), pp.
98
105
.10.1016/j.microrel.2009.08.007
15.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Abdul Mujeebu
,
M.
, and
Ani
,
F. C.
,
2010
, “
FVM Based Numerical Study on the Effect of Solder Bump Arrangement on Capillary Driven Flip Chip Underfill Process
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
281
286
.10.1016/j.icheatmasstransfer.2009.11.012
16.
Abas
,
A.
,
Gan
,
Z. L.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Khor
,
S. F.
,
2016
, “
Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method
,”
PLoS One
,
11
(
7
), p.
e0159357
.10.1371/journal.pone.0159357
17.
Nashrudin
,
M. N.
,
Gan
,
Z. L.
,
Abas
,
A.
,
Ishak
,
M. H. H.
, and
Tura Ali
,
M. Y.
,
2020
, “
Effect of Hourglass Shape Solder Joints on Underfill Encapsulation Process: Numerical and Experimental Studies
,”
Solder. Surf. Mount Technol.
,
32
(
3
), pp.
147
156
.10.1108/SSMT-10-2019-0028
18.
Wang
,
H.
,
Hao
,
X.
,
Zhou
,
H.
,
Zhang
,
Y.
, and
Li
,
D.
,
2016
, “
Underfill Flow Simulation Based on Lattice Boltzmann Method
,”
Microelectron. Eng.
,
149
, pp.
66
72
.10.1016/j.mee.2015.09.010
19.
Abas
,
A.
,
Ng
,
F. C.
,
Gan
,
Z. L.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Chong
,
G. Y.
,
2018
, “
Effect of Scale Size, Orientation Type and Dispensing Method on Void Formation in the CUF Encapsulation of BGA
,”
Sadhana
,
43
(
4
), pp.
59
73
.10.1007/s12046-018-0849-3
20.
Zhang
,
Z.
,
Luo
,
S.
, and
Wong
,
C. P.
,
2004
, “
Recent Advances in Flip-Chip Underfill: Materials, Process, and Reliability
,”
IEEE Trans. Adv. Packag.
, 27(3), pp.
515
524
.10.1109/TADVP.2004.831870
21.
Previti
,
M. A.
, and
Ongley
,
P.
,
2002
, “
No Flow Underfill: Additional Reliability and Failure Mode Analysis
,”
Microelectron. Int.
,
19
(
2
), pp.
32
37
.10.1108/13565360210427870
22.
Chan
,
Y. C.
,
Tu
,
P. L.
, and
Hung
,
K. C.
,
2001
, “
Study of the Self-Alignment of No-Flow Underfill for Micro-BGA Assembly
,”
Microelectron. Reliab.
,
41
(
11
), pp.
1867
1875
.10.1016/S0026-2714(01)00041-5
23.
Pendse
,
R.
,
Choi
,
Y. N.
,
Kim
,
K. M.
,
Narvaez
,
G.
,
Jafari
,
B.
, and
Singh
,
I.
,
2005
, “
Development of No Flow Underfill Technology for Next Generation Flip Chip Products
,”
Proceedings Electronic Components and Technology
, Vol.
1
,
Lake Buena Vista, FL
, May 31–June 5, pp.
291
296
.10.1109/ECTC.2005.1441281
24.
Zhang
,
Z.
, and
Wong
,
C. P.
,
2000
, “
Development of No-Flow Underfill for Lead-Free Bumped Flip-Chip Assemblies
,”
International Symposium on Electronic Materials and Packaging
,
Hong Kong, China
, Nov. 30–Dec. 2, pp.
297
303
.10.1109/EMAP.2000.904170
25.
Wong
,
C. P.
,
Shi
,
S. H.
, and
Jefferson
,
G.
,
1997
, “
High Performance No Flow Underfills for Low-Cost Flip-Chip Applications
,”
Proceedings 47th Electronic Components and Technology Conference
,
San Jose, CA
, 1 May, pp.
850
858
.
26.
Wong
,
C. P.
,
Wang
,
L.
, and
Shi
,
S.-H.
,
1999
, “
Novel High Performance No Flow and Reworkable Underfills for Flip-Chip Applications
,”
Mater. Res. Innovation
,
2
(
4
), pp.
232
247
.10.1007/s100190050091
27.
Lu
,
H.
,
Hung
,
K. C.
,
Stoyanov
,
S.
,
Bailey
,
C.
, and
Chan
,
Y. C.
,
2002
, “
No-Flow Underfill Flip Chip Assembly—An Experimental and Modeling Analysis
,”
Microelectron. Reliab.
,
42
(
8
), pp.
1205
1212
.10.1016/S0026-2714(02)00092-6
28.
Hashimoto
,
T.
,
Shin-Ichiro
,
T.
,
Morinishi
,
K.
, and
Satofuka
,
N.
,
2008
, “
Numerical Simulation of Conventional Capillary Flow and No-Flow Underfill in Flip-Chip Packaging
,”
Comput. Fluids
,
37
(
5
), pp.
520
523
.10.1016/j.compfluid.2007.07.007
29.
Pascarella
,
N. W.
, and
Baldwin
,
D. F.
,
1998
, “
Compression Flow Modeling of Underfill Encapsulants for Low Cost Flip Chip Assembly
,”
IEEE Trans. Compon. Packag. Manuf. Technol.: Part C
, 21(4), pp.
325
335
.10.1109/TCPMC.1998.7102531
30.
Ng
,
F. C.
,
Abas
,
M. A.
, and
Abdullah
,
M. Z.
,
2019
, “
Regional Segregation With Spatial Considerations Based Analytical Filling Time Model for non-Newtonian Power-Law Underfill Fluid in Flip-Chip Encapsulation
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
041009
.10.1115/1.4044817
31.
Ng
,
F. C.
,
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Aziz
,
A.
,
2016
, “
Effect of Thermocapillary Action in the Underfill Encapsulation of Multi-Stack Ball Grid Array
,”
Microelectron. Reliab.
,
66
, pp.
143
160
.10.1016/j.microrel.2016.10.001
32.
Ng
,
F. C.
,
Abas
,
A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
Scaling Effect on Velocity Profiles in Capillary Underfill Flow
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
203
, p.
012013
.10.1088/1757-899X/203/1/012013
33.
Ng
,
F. C.
,
Abas
,
A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
Comparative Study of the Scaling Effect on Pressure Profiles in Capillary Underfill Process
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
203
, p.
012012
.10.1088/1757-899X/203/1/012012
34.
Ng
,
F. C.
,
Abas
,
A.
,
Gan
,
Z. L.
,
Abdullah
,
M. Z.
,
Che Ani
,
F.
, and
Yusuf Tura Ali
,
M.
,
2017
, “
Discrete Phase Method Study of Ball Grid Array Underfill Process Using Nano-Silica Filler-Reinforced Composite-Encapsulant With Varying Filler Loadings
,”
Microelectron. Reliab.
,
72
, pp.
45
64
.10.1016/j.microrel.2017.03.034
35.
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
,
Ani
,
F. C.
, and
Khor
,
S. F.
,
2016
, “
Lattice Boltzmann Method Study of BGA Bump Arrangements on Void Formation
,”
Microelectron. Reliab.
,
56
, pp.
170
181
.10.1016/j.microrel.2015.10.014
36.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Lau
,
C. S.
,
Leong
,
W. C.
, and
Abdul Aziz
,
M. S.
,
2014
, “
Influence of Solder Bump Arrangements on Molded IC Encapsulation
,”
Microelectron. Reliab.
,
54
(
4
), pp.
796
807
.10.1016/j.microrel.2013.12.010
37.
Ng
,
F. C.
,
Zawawi
,
M. H.
, and
Abas
,
M. A.
,
2020
, “
Spatial Analysis of Underfill Flow in Flip-Chip Encapsulation
,”
Solder. Surf. Mount Technol.
, ePub.10.1108/SSMT-05-2020-0017
38.
Gan
,
Z. L.
,
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Ngang
,
J. L.
,
2019
, “
Comparative Study of Pressurized and Capillary Underfill Flow Using Lattice Boltzmann Method
,”
Arab. J. Sci. Eng.
,
44
, pp.
7627
7652
.10.1007/s13369-019-03866-y
You do not currently have access to this content.