Abstract

Ninety percent of high temperature electronic devices operate in temperatures in the range of 150 to 300 °C, and for such temperature needs, technologies typical for the military range might be adapted. To make it possible, new joining techniques are developed, one of them is use of pastes with silver nanoparticles sintered with low temperature joining technique. Silver sintered joints have three times higher thermal conductivity and five times lower electrical resistivity than typical solders, while being able to operate in temperatures reaching 350 °C. In this paper, the authors show the impact of additions of carbon nanoparticles on joints prepared in low temperature joining technology (LTJT). The authors prove that an addition of few percent of graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) improves joints mechanical, thermal, and electrical properties, while ensuring proper rheology of pastes.

References

1.
Więcek
,
B.
,
1999
, “
Heat Transfer in Electronic Circuits With Emphasis on Natural Convection and Radiation
,”
Zesz. Nauk.
, 258, pp.
3
157
.
2.
Raj
,
E.
,
2013
, “
Microcircuit Cooling Systems in Electronics
,” Postdoctoral dissertation,
Łódź University of Technology
,
Łódź, Poland
.
3.
Defense Supply Center
,
2013
, “
Department of Defense Test Method Standard
,”
Defense Supply Center
,
Columbus, OH
, Standard No. MIL-STD-883J.
4.
Vermesan
,
O.
,
John
,
R.
,
Ottella
,
M.
,
Gall
,
H.
, and
Bayerer
,
R.
,
2009
, “
High Temperature Nanoelectronics for Electrical and Hybrid Vehicles
,”
IMAPS High Temperature Electronics Network
,
Oxford, UK
, Sept. 13–16, pp.
209
218
.https://www.researchgate.net/publication/229004596_High_temperature_nanoelectronics_for_electrical_and_hybrid_vehicles
5.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
,
Venkatasubramanian
,
R.
,
Mahajan
,
R.
,
Joshi
,
Y.
,
Sammakia
,
B.
,
Myers
,
B. A.
,
Chorosinski
,
L.
,
Baelmans
,
M.
,
Sathyamurthy
,
P.
, and
Raad
,
P. E.
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
6.
Amalu
,
E. H.
,
Ekere
,
N. N.
, and
Bhatti
,
R. S.
,
2009
, “
High Temperature Electronics: R&D Challenges and Trends in Materials, Packaging and Interconnection Technology
,”
Second International Conference on Adaptive Science and Technology (ICAST)
,
Accra, Ghana
, Jan. 14–16, pp.
146
153
.10.1109/ICASTECH.2009.5409731
7.
Groppo
,
R.
,
Wondrak
,
W.
,
Lugert
,
G.
, and
Riepl
,
T. R.
,
2001
, “
Moving Towards High Temperature Electronics for Automotive Applications
,” MST News No. 4/01, pp.
16
34
.
8.
Schwarzbauer
,
H.
, and
Kuhnert
,
R.
,
1989
, “
Novel Large Area Joining Technique for Improved Power Device Performance
,”
Conference Record of the IEEE Industry Applications Society Annual Meeting
,
San Diego, CA
, Oct. 1–5, pp.
1348
1351
10.1109/28.67536.
9.
Abe
,
K.
,
Hanada
,
T.
,
Yoshida
,
Y.
,
Tanigaki
,
N.
,
Takiguchi
,
H.
,
Nagasawa
,
H.
,
Nakamoto
,
M.
,
Yamaguchi
,
T.
, and
Yase
,
K.
,
1998
, “
Two-Dimensional Array of Silver Nanoparticles
,”
Thin Solid Films
,
327–329
, pp.
524
527
.10.1016/S0040-6090(98)00702-0
10.
Jakubowska
,
M.
,
Jarosz
,
M.
,
Kiełbasinski
,
K.
, and
Młożniak
,
A.
,
2011
, “
New Conductive Trick-Film Paste for High Power and High Temperature Applications
,”
Microelectron. Reliab.
,
51
(
7
), pp.
1235
1240
.10.1016/j.microrel.2011.04.015
11.
Nagasawa
,
H.
,
Maruyama
,
M.
,
Komatsu
,
T.
,
Isoda
,
S.
, and
Kobayashi
,
T.
,
2002
, “
Physical Characteristics of Stabilized Silver Nanoparticles Formed Using a New Thermal-Decomposition Method
,”
Phys. Status Solidi A
,
191
(
1
), pp.
67
76
.10.1002/1521-396X(200205)191:1<67::AID-PSSA67>3.0.CO;2-M
12.
Wang
,
T.
,
Chen
,
X.
,
Lu
,
G.
, and
Lei
,
G.
,
2007
, “
Low-Temperature Sintering With Nano-Silver Paste in Die-Attached Interconnection
,”
J. Electr. Mater.
,
36
(
10
), pp.
1333
1340
.10.1007/s11664-007-0230-5
13.
Kiełbasiński
,
K.
,
Szałapak
,
J.
,
Jakubowska
,
M.
,
Młożniak
,
A.
,
Zwierkowska
,
E.
,
Krzemiński
,
J.
, and
Teodorczyk
,
M.
,
2015
, “
Influence of Nanoparticles Content in Silver Paste on Mechanical and Electrical Properties of LTJT Joints
,”
Adv. Powder Technol.
,
26
(
3
), pp.
907
913
.10.1016/j.apt.2015.03.007
14.
Maruyama
,
M.
,
Matsubayashi
,
R.
,
Iwakuro
,
H.
,
Isoda
,
S.
, and
Komatsu
,
T.
,
2008
, “
Silver Nanosintering: A Lead-Free Alternative to Soldering
,”
Appl. Phys. A
,
93
(
2
), pp.
467
470
.10.1007/s00339-008-4807-5
15.
Peng
,
P.
,
Hu
,
A. M.
,
Huang
,
H.
,
Gerlich
,
A. P.
,
Zhao
,
B. X.
, and
Zhou
,
Y. N.
,
2012
, “
Room-Temperature Pressureless Bonding With Silver Nanowire Paste: Towards Organic Electronic and Heat-Sensitive Functional Devices Packaging
,”
J. Mater. Chem.
,
22
(
26
), pp.
12997
13001
.10.1039/c2jm31979a
16.
Peng
,
P.
,
Hu
,
A.
,
Gerlich
,
A. P.
,
Zou
,
G.
,
Liu
,
L.
, and
Norman Zhou
,
Y.
,
2015
, “
Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications
,”
ACS Appl. Mater. Interfaces
,
7
(
23
), pp.
12597
12618
.10.1021/acsami.5b02134
17.
Siow
,
K.
, and
Lin
,
Y. T.
,
2016
, “
Identifying the Development State of Sintered Silver (Ag) as Bonding Material in Microelectronic Packaging Via a Patent Landscape Study
,”
ASME J. Electron. Packag.
,
138
(
2
), p.
020804
.10.1115/1.4033069
18.
Wereszczak
,
A. A.
,
Vuono
,
D. J.
,
Wang
,
H.
,
Ferber
,
M. K.
, and
Liang
,
Z. F.
,
2012
, “
Properties of Bulk Sintered Silver as a Function of Porosity
,”
Report No. ORNL/TM-2012/130
.10.2172/1041433
19.
Kiełbasiński
,
K.
,
Szałapak
,
J.
,
Młożniak
,
A.
,
Teodorczyk
,
M.
,
Pawłowski
,
R.
,
Krzemiński
,
J.
, and
Jakubowska
,
M.
,
2018
, “
Sintered Nanosilver Joints on Rigid and Flexible Substrates
,”
Bull. Pol. Acad. Sci.: Tech. Sci.
,
66
(
3
), pp.
325
331
.10.24425/123439
20.
Martinez
,
P. M.
,
Ishteev
,
A.
,
Fahimi
,
A.
,
Velten
,
J.
,
Jurewicz
,
I.
,
Dalton
,
A. B.
,
Collins
,
S.
,
Baughman
,
R. H.
, and
Zakhidov
,
A. A.
,
2019
, “
Silver Nanowires on Carbon Nanotube Aerogel Sheets for Flexible, Transparent Electrodes
,”
ACS Appl. Mater. Interfaces
,
11
(
35
), pp.
32235
32243
.10.1021/acsami.9b06368
21.
Luo
,
J.
,
Cheng
,
Z.
,
Li
,
C.
,
Wang
,
L.
,
Yu
,
C.
,
Zhao
,
Y.
,
Chen
,
M.
,
Li
,
Q.
, and
Yao
,
Y.
,
2016
, “
Electrically Conductive Adhesives Based on Thermoplastic Polyurethane Filled With Silver Flakes and Carbon Nanotubes
,”
Compos. Sci. Technol.
,
129
, pp.
191
197
.10.1016/j.compscitech.2016.04.026
22.
Zhang
,
X. M.
,
Yang
,
X. L.
, and
Wang
,
K. Y.
,
2019
, “
Electrical Conductivity Enhancement of Epoxy by Hybrid Carbon Nanotubes and Self-Made Silver Nanoparticles
,”
Fibers Polym.
,
20
(
7
), pp.
1480
1485
.10.1007/s12221-019-8640-6
23.
Amepox Microelektronics Co LTD
,
2020
, “
Amepox
,”
Amepox Microelektronics Co. Ltd.
,
Łódź, Poland
, accessed May 12, 2020, http://amepox.iwacom.pl
24.
Cheap Tubes Inc.
,
2020
, “
Graphene Nanoplatelets
,”
Cheap Tubes Inc.
,
Cambridgeport, VT
, accessed May 12, 2020, https://www.cheaptubes.com/product/graphene-nanoplatelets/
25.
Cheap Tubes Inc.
,
2020
, “
Multi Walled Carbon Nanotubes 30–50 nm
,”
Cheap Tubes Inc.
,
Cambridgeport, VT
, accessed May 12, 2020, https://www.cheaptubes.com/product/multi-walled-carbon-nanotubes-30-50nm/
26.
Lin
,
J. C.
, and
Wang
,
C. Y.
,
1996
, “
Effects of Surfactant Treatment of Silver Powder on the Rheology of Its Thick-Film Paste
,”
Mater. Chem. Phys.
,
45
(
2
), pp.
136
144
.10.1016/0254-0584(96)80091-5
You do not currently have access to this content.