Abstract

The scope of review of this paper focused on the precuring underfilling flow stage of encapsulation process. A total of 80 related works has been reviewed and being classified into process type, method employed, and objective attained. Statistically showed that the conventional capillary is the most studied underfill process, while the numerical simulation was mainly adopted. Generally, the analyses on the flow dynamic and distribution of underfill fluids in the bump array aimed for the filling time determination as well as the predictions of void occurrence. Parametric design optimization was subsequently conducted to resolve the productivity issue of long filling time and reliability issue of void occurrence. The bump pitch was found to the most investigated parameter, consistent to the miniaturization demand. To enrich the design versatility and flow visualization aspects, experimental test vehicle was innovated using imitated chip and replacement fluid, or even being scaled-up. Nonetheless, the analytical filling time models became more accurate and sophiscasted over the years, despite still being scarce in number. With the technological advancement on analysis tools and further development of analytic skills, it was believed that the future researches on underfill flow will become more comprehensive, thereby leading to the production of better packages in terms of manufacturing feasibility, performances, and reliability. Finally, few potential future works were recommended, for instance, microscopic analysis on the bump–fluid interaction, consideration of filler particles, and incorporation of artificial intelligence.

References

1.
Wong
,
C. P.
,
Luo
,
S.
, and
Zhang
,
Z.
,
2000
, “
Flip the Chip
,”
Science
,
290
(
5500
), pp.
2269
2270
.10.1126/science.290.5500.2269
2.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2007
, “
Recent Advances in Modeling the Underfill Process in Flip-Chip Packaging
,”
Microelectron. J.
,
38
(
1
), pp.
67
75
.10.1016/j.mejo.2006.09.017
3.
Zhang
,
Z.
, and
Wong
,
C. P.
,
2004
, “
Recent Advances in Flip-Chip Underfill: Materials, Process, and Reliability
,”
IEEE Trans. Adv. Packag.
,
27
(
3
), pp.
515
524
.10.1109/TADVP.2004.831870
4.
Fang
,
K.
,
2019
, “
3—Encapsulation Process Technology
,”
Encapsulation Technologies for Electronic Applications
, 2nd ed. (Materials and Processes for Electronic Applications),
H.
Ardebili
,
J.
Zhang
, and
M. G.
Pecht
, eds.,
William Andrew Publishing
, Cambridge, MA, pp.
123
181
.
5.
Ng
,
F. C.
,
Abas
,
A.
,
Gan
,
Z. L.
,
Abdullah
,
M. Z.
,
Che Ani
,
F.
, and
Yusuf Tura Ali
,
M.
,
2017
, “
Discrete Phase Method Study of Ball Grid Array Underfill Process Using Nano-Silica Filler-Reinforced Composite-Encapsulant With Varying Filler Loadings
,”
Microelectron. Reliab.
,
72
, pp.
45
64
.10.1016/j.microrel.2017.03.034
6.
Kim
,
Y. B.
, and
Sung
,
J.
,
2012
, “
Capillary-Driven Micro Flows for the Underfill Process in Microelectronics Packaging
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3751
3759
.10.1007/s12206-012-1001-7
7.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Lau
,
C. S.
, and
Azid
,
I. A.
,
2014
, “
Recent Fluid-Structure Interaction Modeling Challenges in IC encapsulation—A Review
,”
Microelectron. Reliab.
,
54
(
8
), pp.
1511
1526
.10.1016/j.microrel.2014.03.012
8.
Lee
,
S.
,
Yim
,
M. J.
,
Master
,
R. N.
,
Wong
,
C. P.
, and
Baldwin
,
D. F.
,
2008
, “
Void Formation Study of Flip Chip in Package Using No-Flow Underfill
,”
IEEE Trans. Electron. Packag. Manuf.
,
31
(
4
), pp.
297
305
.10.1109/TEPM.2008.2002951
9.
Lee
,
S.
,
Yim
,
M. J.
, and
Baldwin
,
D.
,
2009
, “
Void Formation Mechanism of Flip Chip in Package Using No-Flow Underfill
,”
ASME J. Electron. Packag.
,
131
(
3
), p.
031014
.10.1115/1.3153369
10.
Han
,
S.
, and
Wang
,
K. K.
,
1997
, “
Study on the Pressurized Underfill Encapsulation of Flip Chips
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part B
,
20
(
4
), pp.
434
442
.10.1109/96.641512
11.
Khor
,
C. Y.
,
Abdul Mujeebu
,
M.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2010
, “
Finite Volume Based CFD Simulation of Pressurized Flip-Chip Underfill Encapsulation Process
,”
Microelectron. Reliab.
,
50
(
1
), pp.
98
105
.10.1016/j.microrel.2009.08.007
12.
Gan
,
Z. L.
,
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Ngang
,
J. L.
,
2019
, “
Comparative Study of Pressurized and Capillary Underfill Flow Using Lattice Boltzmann Method
,”
Arabian J. Sci. Eng.
,
44
(
9
), pp.
7627
7652
.10.1007/s13369-019-03866-y
13.
Schwiebert
,
M. K.
, and
Leong
,
W. H.
,
1996
, “
Underfill Flow as Viscous Flow Between Parallel Plates Driven by Capillary Action
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part C
,
19
(
2
), pp.
133
137
.10.1109/3476.507149
14.
Guo
,
X. R.
, and
Young
,
W. B.
,
2015
, “
Vacuum Effect on the Void Formation of the Molded Underfill Process in Flip Chip Packaging
,”
Microelectron. Reliab.
,
55
(
3–4
), pp.
613
622
.10.1016/j.microrel.2014.12.001
15.
Lin
,
C. M.
,
Chang
,
W. J.
, and
Fang
,
T. H.
,
2007
, “
Flip-Chip Underfill Packaging Considering Capillary Force, Pressure Difference, and Inertia Effects
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
48
55
.10.1115/1.2429709
16.
Ng
,
F. C.
,
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Aziz
,
A.
,
2016
, “
Effect of Thermocapillary Action in the Underfill Encapsulation of Multi-Stack Ball Grid Array
,”
Microelectron. Reliab.
,
66
, pp.
143
160
.10.1016/j.microrel.2016.10.001
17.
Wang
,
H.
,
Hao
,
X.
,
Zhou
,
H.
,
Zhang
,
Y.
, and
Li
,
D.
,
2016
, “
Underfill Flow Simulation Based on Lattice Boltzmann Method
,”
Microelectron. Eng.
,
149
, pp.
66
72
.10.1016/j.mee.2015.09.010
18.
Han
,
S.
, and
Wang
,
K. K.
,
1997
, “
Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part B
,
20
(
4
), pp.
424
433
.10.1109/96.641511
19.
Lee
,
S. H.
,
Lee
,
H. J.
,
Kim
,
J. M.
, and
Shin
,
Y. E.
,
2011
, “
Dynamic Filling Characteristics of a Capillary Driven Underfill Process in Flip-Chip Packaging
,”
Mater. Trans.
,
52
(
10
), pp.
1998
2003
.10.2320/matertrans.M2011151
20.
Ng
,
F. C.
,
Abas
,
M. A.
, and
Abdullah
,
M. Z.
,
2019
, “
Filling Efficiency of Flip-Chip Underfill Encapsulation Process
,”
Soldering Surf. Mount Technol.
,
32
(
1
), pp.
10
18
.10.1108/SSMT-07-2019-0026
21.
Yao
,
X. J.
,
Wang
,
Z. D.
, and
Zhang
,
W. J.
,
2014
, “
A New Analysis of the Capillary Driving Pressure for Underfill Flow in Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
9
), pp.
1534
1544
.10.1109/TCPMT.2014.2339493
22.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2005
, “
An Analytical Model for Predicting the Underfill Flow Characteristics in Flip-Chip Encapsulation
,”
IEEE Trans. Adv. Packag.
,
28
(
3
), pp.
481
487
.10.1109/TADVP.2005.848385
23.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2019
, “
Regional Segregation With Spatial Considerations-Based Analytical Filling Time Model for Non-Newtonian Power-Law Underfill Fluid in Flip-Chip Encapsulation
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
041009
.10.1115/1.4044817
24.
Nguyen
,
L.
,
Quentin
,
C.
,
Fine
,
P.
,
Cobb
,
B.
,
Bayyuk
,
S.
,
Yang
,
H.
, and
Bidstrup-Allen
,
S. A.
,
1999
, “
Underfill of Flip Chip on Laminates: Simulation and Validation
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
2
), pp.
168
176
.10.1109/6144.774725
25.
Nguyen
,
L.
,
Quentin
,
C.
,
Lee
,
W.
,
Bayyuk
,
S.
,
Bidstrup-Allen
,
S. A.
, and
Wang
,
S.-T.
,
2000
, “
Computational Modeling and Validation of the Encapsulation of Plastic Packages by Transfer Molding
,”
ASME J. Electron. Packag.
,
122
(
2
), pp.
138
146
.10.1115/1.483146
26.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2008
, “
Experimental Verification of Models for Underfill Flow Driven by Capillary Forces in Flip-Chip Packaging
,”
Microelectron. Reliab.
,
48
(
3
), pp.
425
430
.10.1016/j.microrel.2007.06.006
27.
Lee
,
S. H.
,
Sung
,
J.
, and
Kim
,
S. E.
,
2010
, “
Dynamic Flow Measurements of Capillary Underfill Through a Bump Array in Flip Chip Package
,”
Microelectron. Reliab.
,
50
(
12
), pp.
2078
2083
.10.1016/j.microrel.2010.07.001
28.
Kim
,
Y. B.
,
Sung
,
J.
, and
Lee
,
M. H.
,
2011
, “
Micro-PIV Measurements of Capillary Underfill Flows and Effect of Bump Pitch on Filling Process
,”
J. Visualization
,
14
(
3
), pp.
237
248
.10.1007/s12650-011-0073-2
29.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Leong
,
W. C.
,
2012
, “
Visualization of Fluid/Structure Interaction in IC Encapsulation
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
8
), pp.
1239
1246
.10.1109/TCPMT.2012.2199117
30.
Abas
,
A.
,
Haslinda
,
M. S.
,
Ishak
,
M. H. H.
,
Nurfatin
,
A. S.
,
Abdullah
,
M. Z.
, and
Che Ani
,
F.
,
2016
, “
Effect of ILU Dispensing Types for Different Solder Bump Arrangements on CUF Encapsulation Process
,”
Microelectron. Eng.
,
163
, pp.
83
97
.10.1016/j.mee.2016.06.010
31.
Ng
,
F. C.
,
Ali
,
M. Y. T.
,
Abas
,
A.
,
Khor
,
C. Y.
,
Samsudin
,
Z.
, and
Abdullah
,
M. Z.
,
2019
, “
A Novel Analytical Filling Time Chart for Design Optimization of Flip-Chip Underfill Encapsulation Process
,”
Int. J. Adv. Manuf. Technol.
,
105
(
7–8
), pp.
3521
3530
.10.1007/s00170-019-04573-6
32.
Sun
,
Y.
,
Zhang
,
Z.
, and
Wong
,
C. P.
,
2006
, “
Study and Characterization on the Nanocomposite Underfill for Flip Chip Applications
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
1
), pp.
190
197
.10.1109/TCAPT.2006.870389
33.
Sun
,
Y.
,
Zhang
,
Z.
, and
Wong
,
C. P.
,
2005
, “
Study on Mono-Dispersed Nano-Size Silica by Surface Modification for Underfill Applications
,”
J. Colloid Interface Sci.
,
292
(
2
), pp.
436
444
.10.1016/j.jcis.2005.05.067
34.
Shan
,
X.
, and
Chen
,
Y.
,
2018
, “
Experimental and Modeling Study on Viscosity of Encapsulant for Electronic Packaging
,”
Microelectron. Reliab.
,
80
, pp.
42
46
.10.1016/j.microrel.2017.11.011
35.
Wang
,
J.
,
2007
, “
The Effects of Rheological and Wetting Properties on Underfill Filler Settling and Flow Voids in Flip Chip Packages
,”
Microelectron. Reliab.
,
47
(
12
), pp.
1958
1966
.10.1016/j.microrel.2007.04.016
36.
Wang
,
J.
,
2002
, “
Underfill of Flip Chip on Organic Substrate: Viscosity, Surface Tension, and Contact Angle
,”
Microelectron. Reliab.
,
42
(
2
), pp.
293
299
.10.1016/S0026-2714(01)00231-1
37.
Khor
,
C. Y.
,
Ariff
,
Z. M.
,
Ani
,
F. C.
,
Mujeebu
,
M. A.
,
Abdullah
,
M. K.
,
Abdullah
,
M. Z.
, and
Joseph
,
M. A.
,
2010
, “
Three-Dimensional Numerical and Experimental Investigations on Polymer Rheology in Meso-Scale Injection Molding
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
131
139
.10.1016/j.icheatmasstransfer.2009.08.011
38.
Khor
,
C. Y.
,
Abdullah
,
M. K.
,
Abdullah
,
M. Z.
,
Mujeebu
,
M. A.
,
Ramdan
,
D.
,
Majid
,
M. F. M. A.
, and
Ariff
,
Z. M.
,
2010
, “
Effect of Vertical Stacking Dies on Flow Behavior of Epoxy Molding Compound During Encapsulation of Stacked-Chip Scale Packages
,”
Heat Mass Transfer
,
46
(
11–12
), pp.
1315
1325
.10.1007/s00231-010-0661-z
39.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2018
, “
Effect of Solder Bump Shapes on Underfill Flow in Flip-Chip Encapsulation Using Analytical, Numerical and PIV Experimental Approaches
,”
Microelectron. Reliab.
,
81
, pp.
41
63
.10.1016/j.microrel.2017.12.025
40.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Ariff
,
Z. M.
, and
Leong
,
W. C.
,
2012
, “
Effect of Stacking Chips and Inlet Positions on Void Formation in the Encapsulation of 3D Stacked Flip-Chip Package
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
670
680
.10.1016/j.icheatmasstransfer.2012.03.023
41.
Khor
,
C. Y.
, and
Abdullah
,
M. Z.
,
2012
, “
Modelling and Analysis of the Effect of Stacking Chips With TSVs in 3D IC Package Encapsulation Process
,”
Maejo Int. J. Sci. Technol.
,
6
(
2
), pp.
159
185
.https://www.researchgate.net/publication/229302500_Modelling_and_analysis_of_the_effect_of_stacking_chips_with_TSVs_in_3D_IC_package_encapsulation_process
42.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Leong
,
W. C.
,
2012
, “
Fluid/Structure Interaction Analysis of the Effects of Solder Bump Shapes and Input/Output Counts on Moulded Packaging
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
4
), pp.
604
616
.10.1109/TCPMT.2011.2174237
43.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Lau
,
C. S.
,
Leong
,
W. C.
, and
Abdul Aziz
,
M. S.
,
2014
, “
Influence of Solder Bump Arrangements on Molded IC Encapsulation
,”
Microelectron. Reliab.
,
54
(
4
), pp.
796
807
.10.1016/j.microrel.2013.12.010
44.
Ong
,
E. E. S.
,
Abdullah
,
M. Z.
,
Khor
,
C. Y.
,
Loh
,
W. K.
,
Ooi
,
C. K.
, and
Chan
,
R.
,
2014
, “
Fluid-Structure Interaction Analysis on the Effect of Chip Stacking in a 3D Integrated Circuit Package With Through-Silicon Vias During Plastic Encapsulation
,”
Microelectron. Eng.
,
113
, pp.
40
49
.10.1016/j.mee.2013.07.011
45.
Abas
,
A.
,
Gan
,
Z. L.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Khor
,
S. F.
,
2016
, “
Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method
,”
PLoS One
,
11
(
7
), p.
e0159357
.10.1371/journal.pone.0159357
46.
Abas
,
A.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
,
Ani
,
F. C.
, and
Khor
,
S. F.
,
2016
, “
Lattice Boltzmann Method Study of BGA Bump Arrangements on Void Formation
,”
Microelectron. Reliab.
,
56
, pp.
170
181
.10.1016/j.microrel.2015.10.014
47.
Ng
,
F. C.
,
Abas
,
M. A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
CUF Scaling Effect on Contact Angle and Threshold Pressure
,”
Soldering Surf. Mount Technol.
,
29
(
4
), pp.
173
190
.10.1108/SSMT-09-2016-0020
48.
Abas
,
A.
,
Ng
,
F. C.
,
Gan
,
Z. L.
,
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Chong
,
G. Y.
,
2018
, “
Effect of Scale Size, Orientation Type and Dispensing Method on Void Formation in the CUF Encapsulation of BGA
,”
Sadhana - Acad. Proc. Eng. Sci.
,
43
(
4
), p.
0059
.10.1007/s12046-018-0849-3
49.
Young
,
W. B.
, and
Yang
,
W. L.
,
2002
, “
The Effect of Solder Bump Pitch on the Underfill Flow
,”
IEEE Trans. Adv. Packag.
,
25
(
4
), pp.
537
542
.10.1109/TADVP.2002.807564
50.
Young
,
W. B.
, and
Yang
,
W. L.
,
2002
, “
Underfill Viscous Flow Between Parallel Plates and Solder Bumps
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
695
700
.10.1109/TCAPT.2002.806176
51.
Young
,
W. B.
,
2003
, “
Anisotropic Behavior of the Capillary Action in Flip Chip Underfill
,”
Microelectron. J.
,
34
(
11
), pp.
1031
1036
.10.1016/j.mejo.2003.09.001
52.
Young
,
W. B.
, and
Yang
,
W. L.
,
2006
, “
Underfill of Flip-Chip: The Effect of Contact Angle and Solder Bump Arrangement
,”
IEEE Trans. Adv. Packag.
,
29
(
3
), pp.
647
653
.10.1109/TADVP.2006.879495
53.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2009
, “
Numerical Modeling for the Underfill Flow in Flip-Chip Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
227
234
.10.1109/TCAPT.2009.2014355
54.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Abdul Mujeebu
,
M.
, and
Ani
,
F. C.
,
2010
, “
FVM Based Numerical Study on the Effect of Solder Bump Arrangement on Capillary Driven Flip Chip Underfill Process
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
281
286
.10.1016/j.icheatmasstransfer.2009.11.012
55.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Mujeebu
,
M. A.
,
2012
, “
Influence of Gap Height in Flip Chip Underfill Process With Non-Newtonian Flow Between Two Parallel Plates
,”
ASME J. Electron. Packag.
,
134
(
1
), p.
011003
.10.1115/1.4005914
56.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2012
, “
Underfill Process for Two Parallel Plates and Flip Chip Packaging
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1205
1212
.10.1016/j.icheatmasstransfer.2012.07.006
57.
Ng
,
F. C.
,
Abas
,
A.
, and
Abdullah
,
M. Z.
,
2019
, “
Finite Volume Method Study on Contact Line Jump Phenomena and Dynamic Contact Angle of Underfill Flow in Flip-Chip of Various Bump Pitches
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
530
(
1
), p.
012012
.10.1088/1757-899X/530/1/012012
58.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
,
Abdullah
,
M. K.
,
Mujeebu
,
M. A.
,
Ramdan
,
D.
,
Majid
,
M. F. M. A.
,
Ariff
,
Z. M.
, and
Rahman
,
M. A.
,
2011
, “
Numerical Analysis on the Effects of Different Inlet Gates and Gap Heights in TQFP Encapsulation Process
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1861
1870
.10.1016/j.ijheatmasstransfer.2010.10.038
59.
Khor
,
C. Y.
,
Abdullah
,
M. Z.
, and
Ani
,
F. C.
,
2011
, “
Study on the Fluid/Structure Interaction at Different Inlet Pressures in Molded Packaging
,”
Microelectron. Eng.
,
88
(
10
), pp.
3182
3194
.10.1016/j.mee.2011.06.026
60.
Nashrudin
,
M. N.
,
Abas
,
M. A.
,
Abdullah
,
M. Z.
,
Ali
,
M. Y. T.
, and
Samsudin
,
Z.
,
2021
, “
Study of Different Dispensing Patterns of No-Flow Underfill Using Numerical and Experimental Methods
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
031005
.10.1115/1.4049175
61.
Ramdan
,
D.
,
Abdullah
,
M. Z.
,
Khor
,
C. Y.
,
Leong
,
W. C.
,
Loh
,
W. K.
,
Ooi
,
C. K.
, and
Ooi
,
R. C.
,
2012
, “
Fluid/Structure Interaction Investigation in PBGA Packaging
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
11
), pp.
1786
1795
.10.1109/TCPMT.2012.2215860
62.
Zhu
,
W.
,
Wang
,
K.
, and
Wang
,
Y.
,
2018
, “
A Novel Model for Simulating the Racing Effect in Capillary-Driven Underfill Process in Flip Chip
,”
J. Micromech. Microeng.
,
28
(
4
), p.
045002
.10.1088/1361-6439/aaa2e4
63.
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
,
Aziz
,
M. A.
,
Saad
,
A. A.
,
Abdullah
,
M. K.
,
Loh
,
W. K.
,
Ooi
,
R. C.
, and
Ooi
,
C. K.
,
2017
, “
Study on the Fluid–Structure Interaction at Different Layout of Stacked Chip in Molded Packaging
,”
Arabian J. Sci. Eng.
,
42
(
11
), pp.
4743
4757
.10.1007/s13369-017-2659-z
64.
Zhou
,
S.
, and
Sun
,
Y.
,
2012
, “
Multiscale, Multiphysics Model of Underfill Flow for Flip-Chip Packages
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
6
), pp.
893
902
.10.1109/TCPMT.2012.2184762
65.
Guo
,
Y.
,
Lehmann
,
G. L.
,
Driscoll
,
T.
, and
Cotts
,
E. J.
,
1999
, “A
Model of the Underfill Flow Process: Particle Distribution Effects
,”
Electronic Components and Technology Conference
, San Diego, CA, June 1–4, pp.
71
76
.10.1109/ECTC.1999.776066
66.
Ishak
,
M. H. H.
,
Ismail
,
F.
,
Abdul Aziz
,
M. S.
, and
Abdullah
,
M. Z.
,
2020
, “
Effect of Adhesive Force on Underfill Process Based on Lattice Boltzmann Method
,”
Microelectron. Int.
,
37
(
1
), pp.
54
63
.10.1108/MI-11-2018-0071
67.
Nashrudin
,
M. N.
,
Gan
,
Z. L.
,
Abas
,
A.
,
Ishak
,
M. H. H.
, and
Tura Ali
,
M. Y.
,
2020
, “
Effect of Hourglass Shape Solder Joints on Underfill Encapsulation Process: Numerical and Experimental Studies
,”
Soldering Surf. Mount Technol.
,
32
(
3
), pp.
147
156
.10.1108/SSMT-10-2019-0028
68.
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
, and
Abas
,
A.
,
2016
, “
Lattice Boltzmann Method Study of Effect Three Dimensional Stacking-Chip Package Layout on Micro-Void Formation During Encapsulation Process
,”
Microelectron. Reliab.
,
65
, pp.
205
216
.10.1016/j.microrel.2016.07.002
69.
Ishak
,
M. H. H.
,
Ismail
,
F.
,
Aziz
,
M. S. A.
,
Abdullah
,
M. Z.
, and
Abas
,
A.
,
2019
, “
Optimization of 3D IC Stacking Chip on Molded Encapsulation Process: A Response Surface Methodology Approach
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1139
1153
.10.1007/s00170-019-03525-4
70.
Ng
,
F. C.
,
Abas
,
A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
Comparative Study of the Scaling Effect on Pressure Profiles in Capillary Underfill Process
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
203
(
1
), p.
012012
.10.1088/1757-899X/203/1/012012
71.
Ng
,
F. C.
,
Zawawi
,
M. H.
, and
Abas
,
M. A.
,
2020
, “
Spatial Analysis of Underfill Flow in Flip-Chip Encapsulation
,”
Soldering Surf. Mount Technol.
,
33
(
2
), pp.
112
127
.10.1108/SSMT-05-2020-0017
72.
Hashimoto
,
T.
,
Shin-Ichiro
,
T.
,
Morinishi
,
K.
, and
Satofuka
,
N.
,
2008
, “
Numerical Simulation of Conventional Capillary Flow and No-Flow Underfill in Flip-Chip Packaging
,”
Comput. Fluids
,
37
(
5
), pp.
520
523
.10.1016/j.compfluid.2007.07.007
73.
Wang
,
H.
,
Zhou
,
H.
,
Zhang
,
Y.
,
Li
,
D.
, and
Xu
,
K.
,
2011
, “
Three-Dimensional Simulation of Underfill Process in Flip-Chip Encapsulation
,”
Comput. Fluids
,
44
(
1
), pp.
187
201
.10.1016/j.compfluid.2010.12.030
74.
Young
,
W. B.
,
2004
, “
Capillary Impregnation Into Cylinder Banks
,”
J. Colloid Interface Sci.
,
273
(
2
), pp.
576
580
.10.1016/j.jcis.2003.11.056
75.
Young
,
W. B.
,
2010
, “
Modeling of a Non-Newtonian Flow Between Parallel Plates in a Flip Chip Encapsulation
,”
Microelectron. Reliab.
,
50
(
7
), pp.
995
999
.10.1016/j.microrel.2010.03.008
76.
Yao
,
X. J.
,
Wang
,
Z.
,
Zhang
,
W.
, and
Zhou
,
X.
,
2014
, “
A New Model for Permeability of Porous Medium in the Case of Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
8
), pp.
1265
1275
.10.1109/TCPMT.2014.2316537
77.
Luo
,
W.
,
Liang
,
J. J.
,
Zhang
,
Y.
, and
Zhou
,
H. M.
,
2016
, “
An Analytical Model for the Underfill Flow Driven by Capillary Forces in Chip Packaging
,” 17th International Conference on Electronic Packaging Technology (
ICEPT
), Wuhan, China, Aug. 16–19, pp.
1381
1386
.10.1109/ICEPT.2016.7583381
78.
Young
,
W. B.
,
2011
, “
Effect on Filling Time for a Non-Newtonian Flow During the Underfilling of a Flip Chip
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
7
), pp.
1048
1053
.10.1109/TCPMT.2011.2141993
79.
Young
,
W. B.
,
2011
, “
Non-Newtonian Flow Formulation of the Underfill Process in Flip-Chip Packaging
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
1
(
12
), pp.
2033
2037
.10.1109/TCPMT.2011.2169260
80.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2007
, “
A Theoretical Analysis of the Concept of Critical Clearance Toward a Design Methodology for the Flip-Chip Package
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
473
478
.10.1115/1.2804098
81.
Peng
,
S. W.
, and
Young
,
W. B.
,
2010
, “
Application of the Underfill Model to Bump Arrangement and Dispensing Process Design
,”
IEEE Trans. Electron. Packag. Manuf.
,
33
(
2
), pp.
122
128
.10.1109/TEPM.2010.2044648
82.
Yang
,
C.
, and
Young
,
W. B.
,
2013
, “
The Effective Permeability of the Underfill Flow Domain in Flip-Chip Packaging
,”
Appl. Math. Modell.
,
37
(
3
), pp.
1177
1186
.10.1016/j.apm.2012.03.036
83.
Pascarella
,
N. W.
, and
Baldwin
,
D. F.
,
1998
, “
Compression Flow Modeling of Underfill Encapsulants for Low Cost Flip Chip Assembly
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part C
, 21(4), pp.
325
335
10.1109/TCPMC.1998.7102531.
84.
Wang
,
J.
,
2005
, “
Flow Time Measurements for Underfills in Flip-Chip Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
366
370
.10.1109/TCAPT.2005.848488
85.
Ng
,
F.
,
Abas
,
C. A.
,
Abdullah
,
M. Z.
,
Ishak
,
M. H. H.
, and
Chong
,
G. Y.
,
2017
, “
Scaling Effect on Velocity Profiles in Capillary Underfill Flow
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
203
(
1)
, p.
012013
.10.1088/1757-899X/203/1/012013
86.
Zhang
,
W. J.
, and
van Luttervelt
,
C. A.
,
2011
, “
Toward a Resilient Manufacturing System
,”
CIRP Ann. - Manuf. Technol.
,
60
(
1
), pp.
469
472
.10.1016/j.cirp.2011.03.041
87.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D. J.
,
2005
, “
Influence of Transient Flow and Solder Bump Resistance on Underfill Process
,”
Microelectron. J.
,
36
(
8
), pp.
687
693
.10.1016/j.mejo.2005.05.022
88.
Yao
,
X. J.
, and
Zhang
,
W. J.
,
2018
, “
An Analytical Model for Permeability of Underfill Flow in Flip-Chip Packaging With Consideration of the Actual Specific Surface and Tortuosity
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
8
(
8
), pp.
1507
1514
.10.1109/TCPMT.2018.2843808
89.
Yao
,
X. J.
,
Fang
,
J. J.
, and
Zhang
,
W.
,
2018
, “
A Further Study on the Analytical Model for the Permeability in Flip-Chip Packaging
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
011001
.10.1115/1.4038391
90.
Huang
,
C. Y.
,
Shen
,
L. C.
,
Wu
,
T. H.
, and
Greene
,
C.
,
2020
, “
Application of Multi-Quality Parameter Design in the Optimization of Underfilling Process—A Case Study of a Vehicle Electronic Module
,”
Soldering Surf. Mount Technol.
,
33
(
2
), pp.
128
138
.https://www.emerald.com/insight/content/doi/10.1108/SSMT-05-2020-0016/full/html
91.
Chen
,
S. C.
,
Chen
,
Y. C.
,
Cheng
,
N. T.
, and
Huang
,
M. S.
,
1998
, “
Simulation of Injection-Compression Mold-Filling Process
,”
Int. Commun. Heat Mass Transfer
,
25
(
7
), pp.
907
917
.10.1016/S0735-1933(98)00082-7
92.
Khor
,
C. Y.
, and
Abdullah
,
M. Z.
,
2012
, “
Optimization of IC Encapsulation Considering Fluid/Structure Interaction Using Response Surface Methodology
,”
Simul. Modell. Pract. Theory
,
29
, pp.
109
122
.10.1016/j.simpat.2012.07.003
93.
Ong
,
E. E.
,
Abdullah
,
M. Z.
,
Khor
,
C. Y.
,
Leong
,
W. C.
,
Loh
,
W. K.
,
Ooi
,
C. K.
, and
Chan
,
R.
,
2013
, “
Numerical Modeling and Analysis of Microbump Pitch Effect in 3D IC Package With TSV During Molded Underfill (MUF)
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
2
), pp.
210
222
.10.1080/19942060.2013.11015465
94.
Guo
,
X. R.
, and
Young
,
W. B.
,
2015
, “
A Two-Dimensional Simulation Model for the Molded Underfill Process in Flip Chip Packaging
,”
J. Mech. Sci. Technol.
,
29
(
7
), pp.
2967
2974
.10.1007/s12206-015-0627-7
95.
Ishak
,
M. H. H.
,
Abdullah
,
M. Z.
,
Abdul Aziz
,
M. S.
,
Abas
,
A.
,
Loh
,
W. K.
,
Ooi
,
R. C.
, and
Ooi
,
C. K.
,
2017
, “
Effects of Aspect Ratio in Moulded Packaging Considering Fluid/Structure Interaction: A CFD Modelling Approach
,”
J. Appl. Fluid Mech.
,
10
(
6
), pp.
1799
1811
.10.29252/jafm.73.245.27083
You do not currently have access to this content.