Abstract

Estimating the distribution and magnitude of heat generation within electronics packages is pivotal for thermal packaging design and active thermal management systems. Inverse heat conduction methods can provide estimates using measured temperature profiles acquired using infrared imaging or discrete temperature sensors. However, if the heater locations are unknown, applying a fine grid of potential heater locations across the surface where heat generation is expected can result in prohibitively large computation times. In contrast, using a more computationally efficient coarse grid can reduce the accuracy of heat flux estimations. This paper evaluates two methods for reducing computation time using a sensitivity-coefficient method for solving the inverse heat conduction problem (IHCP). One strategy uses a coarse grid that is refined near the hot spots, while the other uses a fine grid but only considers heater locations near the hot spots. These methods are compared using input temperature maps acquired from a “numerical experiment,” where the outputs of a three-dimensional (3D) steady-state thermal model in FloTHERM are used for input temperatures, and temperature maps procured using infrared microscopy on a real electronics package, using sensitivity coefficients calculated with the FloTHERM model. Compared to the coarse-grid method, the fine-grid method is found to reduce computation time without significantly reducing accuracy, making it more convenient for designing and testing electronics packages. It also avoids the problem of “false hot spots” that occurs with the coarse-grid method. Overall, this approach provides a mechanism to predict hot spot locations during design and testing and a tool for active thermal management.

References

1.
Beck
,
C. R.
,
Blackwell
,
J. V.
, and
St Clair
,
B.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley-Interscience
,
New York
.
2.
Huang
,
C.-H.
, and
Cheng
,
S.-C.
,
2001
, “
Three-Dimensional Inverse Estimation of Heat Generation in Board Mounted Chips
,”
J. Thermophys. Heat Transfer
,
15
(
4
), pp.
439
446
.10.2514/2.6630
3.
Janicki
,
M.
,
Zubert
,
M.
, and
Napieralski
,
A.
,
1998
, “
Application of Inverse Heat Conduction Methods in Temperature Monitoring of Integrated Circuits
,”
Sens. Actuators, A Phys
,
71
(
1–2
), pp.
51
57
.10.1016/S0924-4247(98)00171-X
4.
Gonzalez Cuadrado
,
D.
,
Marconnet
,
A. M.
, and
Paniagua
,
G.
,
2018
, “
Inverse Conduction Heat Transfer and Kriging Interpolation Applied to Temperature Sensor Location in Microchips
,”
ASME J. Electron. Packag.
,
140
(
1
), p. 010905.10.1115/1.4039026
5.
Yang
,
L.
,
Wang
,
Y.
,
Liu
,
H.
,
Yan
,
G.
, and
Kou
,
W.
,
2014
, “
Infrared Identification of Internal Overheating Components Inside an Electric Control Cabinet by Inverse Heat Transfer Problem
,”
SPIE
Paper No. 930002.10.1117/12.2072030
6.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer
,
Taylor & Francis
,
New York
.
7.
Sousa
,
J. F. L.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Villafañe
,
L.
,
2012
, “
Three-Dimensional (3D) Inverse Heat Flux Evaluation Based on Infrared Thermography
,”
Quant. Infrared Thermogr. J
,
9
(
2
), pp.
177
191
.10.1080/17686733.2012.743697
8.
Huang
,
C.-H.
, and
Wang
,
S.-P.
,
1999
, “
A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3387
3403
.10.1016/S0017-9310(99)00020-4
9.
Beck
,
J. V.
, and
Woodbury
,
K. A.
,
2016
, “
Inverse Heat Conduction Problem: Sensitivity Coefficient Insights, Filter Coefficients, and Intrinsic Verification
,”
Int. J. Heat Mass Transfer
,
97
, pp.
578
588
.10.1016/j.ijheatmasstransfer.2016.02.034
10.
Nguyen
,
K. T.
, and
Bendada
,
A.
,
2000
, “
An Inverse Approach for the Prediction of the Temperature Evolution During Induction Heating of a Semi-Solid Casting Billet an Inverse Approach for the Prediction of the Temperature Evolution d
,”
Model. Simul. Mater. Sci. Eng
,
8
(
6
), pp.
857
870
.10.1088/0965-0393/8/6/307
11.
Cui
,
M.
,
Yang
,
K.
,
Xu
,
X. L.
,
Wang
,
S. D.
, and
Gao
,
X. W.
,
2016
, “
A Modified Levenberg-Marquardt Algorithm for Simultaneous Estimation of Multi-Parameters of Boundary Heat Flux by Solving Transient Nonlinear Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
97
, pp.
908
916
.10.1016/j.ijheatmasstransfer.2016.02.085
12.
Cabeza
,
J. M. G.
,
Garcia
,
J. A. M.
, and
Rodriguez
,
A. C.
,
2010
, “
Filter Digital Form of Two Future Temperature Methods for the Inverse Heat Conduction: A Spectral Comparison
,”
Int. J. Numer. Meth. Biomed. Eng.
,
26
, pp.
554
573
.10.1002/cnm.1142
13.
Lin
,
S. M.
,
2011
, “
A Sequential Algorithm and Error Sensitivity Analysis for the Inverse Heat Conduction Problems With Multiple Heat Sources
,”
Appl. Math. Model
,
35
(
6
), pp.
2607
2617
.10.1016/j.apm.2010.11.015
14.
Colaco
,
M.
,
Orlande
,
H.
, and
Dulikravich
,
G.
,
2006
, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
1
54
.10.1590/S1678-58782006000100001
15.
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2013
, “
Estimation Metrics and Optimal Regularization in a Tikhonov Digital Filter for the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
31
39
.10.1016/j.ijheatmasstransfer.2013.02.052
16.
Beck
,
J. V.
,
2008
, “
Filter Solutions for the Nonlinear Inverse Heat Conduction Problem
,”
Inverse Probl. Sci. Eng.
,
16
(
1
), pp.
3
20
.10.1080/17415970701198332
17.
Guo
,
Z.
,
Lu
,
T.
, and
Liu
,
B.
,
2017
, “
Inverse Heat Conduction Estimation of Inner Wall Temperature Fluctuations Under Turbulent Penetration
,”
J. Therm. Sci.
,
26
(
2
), pp.
160
165
.10.1007/s11630-017-0925-8
18.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
Real Time Solution for Inverse Heat Conduction Problems in a Two-Dimensional Plate With Multiple Heat Fluxes at the Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1148
1156
.10.1016/j.ijheatmasstransfer.2015.08.020
19.
Krane, P., Gonzalez Cuadrado
,
D.
,
Lozano
,
F.
,
Paniagua
,
G.
, and
Marconnet
,
A.
,
2019
, “
Identifying Hot Spots in Electronics Packages With a Sensitivity-Coefficient Based Inverse Heat Conduction Method
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
504
510
.10.1109/ITHERM.2019.8757292
You do not currently have access to this content.