Abstract

In a highly competitive and demanding micro-electronics market, non-destructive testing (NDT) technology has been widely applied to defect detection and evaluation of micro-electronic packaging. However, the trend of micro-electronic packaging toward miniaturization, high-density, ultrathin, ultralight, and with small chip footprint, poses an urgent demand for novel NDT methods with high-resolution and large penetration depth, which is utilized for internal defect detection and identification of advanced complicated packages. The conventional NDT methods for micro-electronic packaging mainly include optical visual inspection, X-ray inspection, active infrared thermography, scanning acoustic microscopy (SAM), atomic force microscopy (AFM), laser Doppler vibration measuring technique, scanning SQUID microscopy (SSM), electrical impedance spectroscopy, scanning electron microscope (SEM), and so on. This paper aims to provide a review of addressing their basic principles, advantages, limitations, and application researches in the field of defect inspection of micro-electronic packaging. Moreover, in order to overcome the shortcomings of the existing NDT methods, this paper emphasizes a novel NDT approach, called hybrid ultrasonic-laser digital holographic microscopy (DHM) imaging inspection method, and discusses its basic principle, merits, key techniques, system construction, and experimental results in detail. When some key technical problems can be solved in further research, this method will become a potentially promising technique for defect detection and evaluation of advanced complicated packages.

References

1.
Leijten
,
A. J. M.
,
Prem
,
E.
,
Heide
,
M. J. L. D.
,
Butter
,
M.
,
Marek
,
M.
, and
Irran
,
J.
,
2012
, “
Electronic Components and Systems in Europe. The Future Impact of ENIAC and ARTEMIS
,”
European Commission
,
Brussels, Belgium
, Report No.
SMART 2012/0050
.https://op.europa.eu/en/publication-detail/-/publication/c0ec817f-c714-4c5e-aaf0-d8afd38db18f
2.
Li
,
Y.
, and
Goyal
,
D.
,
2017
,
3D Microelectronic Packaging: From Fundamentals to Applications (Springer Series in Advanced Microelectronics, Vol. 57)
,
Springer
,
Cham, Switzerland
.
3.
Pouria
,
A.
,
Santhakumar
,
S.
, and
Hoon
,
S.
,
2018
, “
An Overview of Non-Destructive Testing Methods for Integrated Circuit Packaging Inspection
,”
Sensors
,
18
(
7
), p.
1981
.10.3390/s18071981
4.
Su
,
L.
,
2015
, “
Research on High Frequency Ultrasonic Diagnosis of Flip Chip Flaws
,” Ph.D. dissertation,
Huazhong University of Science and Technology
,
Wuhan, China
.
5.
Su
,
L.
,
Yu
,
X. N.
,
Li
,
K.
, and
Pecht
,
M.
,
2020
, “
Defect Inspection of Flip Chip Solder Joints Based on Non-Destructive Methods: A Review
,”
Microelectron. Reliab.
,
110
, p.
113657
.10.1016/j.microrel.2020.113657
6.
SIA
,
2013
, “
ITRS: International Technology Roadmap for Semiconductors, Metrology Summary
,”
SIA, Washington, DC
.
7.
Early
,
M. D.
,
2011
,
Accurate, High Speed Automated Optical Inspection Comes of Age
,
Teradyne
,
North Reading, MA
.
8.
Yen
,
H. N.
,
Tsai
,
D. M.
, and
Feng
,
S. K.
,
2008
, “
Full-Field 3-D Flip-Chip Solder Bumps Measurement Using DLP-Based Phase Shifting Technique
,”
IEEE Trans. Adv. Packag.
,
31
(
4
), pp.
830
840
.10.1109/TADVP.2008.2005015
9.
Yen
,
H. N.
, and
Tsai
,
D. M.
,
2004
, “
A Fast Full-Field 3D Measurement System for BGA Coplanarity Inspection
,”
Int. J. Adv. Manuf. Technol.
,
24
(
1
), pp.
132
139
.10.1007/s00170-003-1778-8
10.
Zhu
,
Y.
,
Wang
,
L. P.
,
Gu
,
Y. G.
,
Zhai
,
C.
,
Jiang
,
B. Y.
, and
Ni
,
J.
,
2018
, “
A Laser Triangulation-Based 3D Measurement System for Inner Surface of Deep Holes
,”
ASME
Paper No. MSEC2018-6453.10.1115/MSEC2018-6453
11.
Cai
,
N.
,
Lin
,
J. F.
,
Ye
,
Q.
,
Wang
,
H.
,
Weng
,
S. W.
, and
Ling
,
W. K. B.
,
2017
, “
A New IC Solder Joint Inspection Method for an Automatic Optical Inspection System Based on an Improved Visual Background Extraction Algorithm
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
6
(
1
), pp.
161
172
.10.1109/TCPMT.2015.2501284
12.
Che
,
S. Y.
,
2018
, “
Research on Circuit Board Defect Detection System Based on Machine Vision
,” Master dissertation,
Hefei University of Technology
,
Hefei, China
.
13.
Mehr
,
M. Y.
,
Bahrami
,
A.
,
Fischer
,
H.
, and
Zhang
,
G. Q.
,
2015
, “
An Overview of Scanning Acoustic Microscope a Reliable Method for Non-Destructive Failure Analysis of Microelectronic Components
,”
Proceedings of the IEEE 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
,
Budapest, Hungary
,
Apr. 19–22
.10.1109/EuroSimE.2015.7103077
14.
Su
,
L.
,
Shi
,
T. L.
,
Xu
,
Z. S.
,
Lu
,
X. N.
, and
Liao
,
G. L.
,
2013
, “
Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer
,”
Sensors
,
13
(
12
), pp.
16281
16291
.10.3390/s131216281
15.
Brand
,
S.
,
Raum
,
K.
,
Czuratis
,
P.
, and
Hoffrogge
,
P.
,
2007
, “
9D-6 Signal Analysis in Scanning Acoustic Microscopy for Non-Destructive Assessment of Connective Defects in Flip-Chip BGA Devices
,”
Proceedings of the IEEE Ultrasonics Symposium
,
New York,
Oct. 28–31
, pp.
817
820
.10.1109/ULTSYM.2007.209
16.
Fan
,
M. Y.
,
Wei
,
L.
,
He
,
Z. Z.
,
Wei
,
W.
, and
Lu
,
X. N.
,
2016
, “
Defect Inspection of Solder Bumps Using the Scanning Acoustic Microscopy and Fuzzy SVM Algorithm
,”
Microelectron. Reliab.
,
65
(
10
), pp.
192
197
.10.1016/j.microrel.2016.08.010
17.
Zhang
,
Y. L.
,
Guo
,
N.
,
Du
,
H.
, and
Li
,
W. H.
,
2005
, “
Automated Defect Recognition of C-SAM Images in IC Packaging Using Support Vector Machines
,”
Int. J. Adv. Manuf. Technol.
,
25
(
11–12
), pp.
1191
1196
.10.1007/s00170-003-1942-1
18.
Guo
,
X. H.
,
Xu
,
C. G.
,
Yang
,
L.
, and
Peng
,
K.
,
2014
, “
Detection Resolution Analysis of Scanning Acoustic Microscopy Used in Electronic Packaging
,”
Appl. Mech. Mater.
,
536–537
, pp.
272
275
.10.4028/www.scientific.net/AMM.536-537.272
19.
Liu
,
Z. Z.
,
Xu
,
C. G.
,
Guo
,
X. H.
,
Zhao
,
X. Y.
, and
Yang
,
L.
,
2012
, “
Scanning Acoustic Microscopy Testing Technology for Electronic Package and Welding Quality
,”
Electron. Packag.
,
12
(
3
), pp.
1
24
.
20.
Xu
,
C. G.
,
Liu
,
Z. Z.
,
Zhao
,
X. Y.
,
Meng
,
B. L.
, and
Wu
,
Y.
,
2011
, “
Development of Scanning Acoustic Microscopy Applied on Electronic Package Structure's Inspection
,”
Proceedings of the China Mechanical Electronics Conference
,
Xi'an, China
, Sept. 9–11, pp.
403
406
.
21.
Su
,
L.
,
Liao
,
G. L.
,
Shi
,
T. L.
, and
Zhang
,
Y. C.
,
2018
, “
Intelligent Diagnosis of Flip Chip Solder Bumps Using High-Frequency Ultrasound and a Naive Bayes Classifier
,”
Insight
,
60
(
5
), pp.
264
269
.10.1784/insi.2018.60.5.264
22.
Wang
,
Z.
,
Liu
,
X.
,
He
,
Z.
,
Su
,
L.
, and
Lu
,
X.
,
2019
, “
Intelligent Detection of Flip Chip With the Scanning Acoustic Microscopy and the General Regression Neural Network
,”
Microelectron. Eng.
,
217
(
9
), p.
111127
.10.1016/j.mee.2019.111127
23.
Yu
,
X.
,
Huang
,
H.
,
Xie
,
W.
,
Gu
,
J.
,
Li
,
K.
, and
Su
,
L.
,
2020
, “
Simulation Research on Sparse Reconstruction for Defect Signals of Flip Chip Based on High-Frequency Ultrasound
,”
Appl. Sci.
,
10
(
4
), p.
1292
.10.3390/app10041292
24.
Lee
,
C. S.
,
Zhang
,
G. M.
,
Harvey
,
D. M.
,
Ma
,
H. W.
, and
Braden
,
D. R.
,
2016
, “
Finite Element Modelling for the Investigation of Edge Effect in Acoustic Micro Imaging of Microelectronic Packages
,”
Meas. Sci. Technol.
,
27
(
2
), p.
025601
.10.1088/0957-0233/27/2/025601
25.
Lee
,
C. S.
,
Zhang
,
G. M.
,
Harvey
,
D. M.
, and
Ma
,
H. W.
,
2015
, “
Development of C-Line Plot Technique for the Characterization of Edge Effects in Acoustic Imaging: A Case Study Using Flip Chip Package Geometry
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2762
2768
.10.1016/j.microrel.2015.08.005
26.
Yang
,
R. S. H.
,
Braden
,
D. R.
,
Zhang
,
G. M.
, and
Harvey
,
D. M.
,
2014
, “
Effects of Component Placement on Solder Joint Through-Life Reliability
,”
Proc. Inst. Mech. Eng., Part O
,
228
(
4
), pp.
327
336
.10.1177/1748006x13518769
27.
Olumide
,
A. A.
,
Baishya
,
K.
,
Zhang
,
G. M.
,
Braden
,
D. R.
, and
Harvey
,
D. M.
,
2018
, “
Non-Destructive Evaluation and Life Monitoring of Solder Joints in Area Array Packaging
,”
Proceedings of the 7th Electronic System-Integration Technology Conference (ESTC)
,
Dresden, Germany
,
Sept. 18–21
, pp.
1
5
.10.1109/ESTC.2018.8546476
28.
Brand
,
S.
,
Appenroth
,
T.
,
Naumann
,
F.
,
Steller
,
W.
,
Wolf
,
M. J.
,
Czurratis
,
P.
,
Altmann
,
F.
, and
Petzold
,
M.
,
2015
, “
Acoustic GHz-Microscopy and Its Potential Applications in 3D-Integration Technologies
,”
Proceedings of the 65th Electronic Components and Technology Conference (ECTC)
,
San Diego, CA
,
May 26–29
, pp.
46
53
.10.1109/ECTC.2015.7159570
29.
Brand
,
S.
,
Vogg
,
G.
, and
Petzold
,
M.
,
2018
, “
Defect Analysis Using Scanning Acoustic Microscopy for Bonded Microelectronic Components With Extended Resolution and Defect Sensitivity
,”
Microsyst. Technol.
,
24
(
1
), pp.
779
792
.10.1007/s00542-017-3521-7
30.
Zhang
,
G. M.
,
Zhang
,
C. Z.
, and
Harvey
,
D. M.
,
2012
, “
Sparse Signal Representation and Its Applications in Ultrasonic NDE
,”
Ultrasonics
,
52
(
3
), pp.
351
363
.10.1016/j.ultras.2011.10.001
31.
Zhang
,
G. M.
,
David
,
M.
, and
Harvey
,
D. M.
,
2012
, “
Contemporary Ultrasonic Signal Processing Approaches for Nondestructive Evaluation of Multilayered Structures
,”
Nondestr. Test. Eval.
,
27
(
1
), pp.
1
27
.10.1080/10589759.2011.577428
32.
Lee
,
C. S.
,
Zhang
,
G. M.
,
Harvey
,
D. M.
, and
Qi
,
A. L.
,
2016
, “
Characterization of Micro-Crack Propagation Through Analysis of Edge Effect in Acoustic Micro Imaging of Microelectronic Packages
,”
NDT E Int.
,
79
(
15
), pp.
1
6
.10.1016/j.ndteint.2015.11.007
33.
Rajaram
,
S.
, and
Barbian
,
E.
,
2020
, “
Application of B-Scan Sat Mode, an Acoustic Cross Section Technique to Analyze Packaged Components Beyond Delamination
,”
Proceedings of the International Symposium for Testing and Failure Analysis, ISTFA
,
Los Angeles, CA
,
Nov. 15–19
, pp.
233
239
.10.31399/asm.cp.istfa2020p0233
34.
Chao
,
W.
,
Harteneck
,
B. D.
,
Liddle
,
J. A.
,
Anderson
,
E. H.
, and
Attwood
,
D. T.
,
2005
, “
Soft X-Ray Microscopy at a Spatial Resolution Better Than 15 nm
,”
Nature
,
435
(
7046
), pp.
1210
1213
.10.1038/nature03719
35.
Pacheco
,
M.
, and
Goyal
,
D.
,
2011
, “
Detection and Characterization of Defects in Microelectronic Packages and Boards by Means of High-Resolution X-Ray Computed Tomography (CT)
,”
Proceedings of the 61st Electronic Components and Technology Conference
,
Lake Buena Vista, FL
,
May 31–June 3
, pp.
1263
1268
.10.1109/ECTC.2011.5898673
36.
Withers
,
P. J.
,
Bouman
,
C.
,
Carmignato
,
S.
,
Cnudde
,
V.
,
Grimaldi
,
D.
,
Hagen
,
C. K.
,
Maire
,
E.
,
Manley
,
M.
,
Plessis
,
A. D.
, and
Stock
,
S. R.
,
2021
, “
X-Ray Computed Tomography
,”
Nat. Rev. Methods Primers
,
1
(
1
), p.
18
.10.1038/s43586-021-00015-4
37.
Roth
,
H.
,
He
,
Z. H.
, and
Mayer
,
T.
,
2010
, “
Inspection of Through Silicon Vias (TSV) and Other Interconnections in IC Packages by Computed Tomography
,”
Proceedings of the 3rd Electronic System-Integration Technology Conference (ESTC)
,
Berlin, Germany
,
Sept. 13–16
, pp.
1
4
.10.1109/EPTC.2009.5416506
38.
Zhu
,
Z.
,
Chan
,
Y. C.
, and
Wu
,
F.
,
2019
, “
Effect of Alternating Current (AC) Stressing on the Microstructure and Mechanical Properties of Low-Silver Content Solder Interconnect
,”
Microelectron. Reliab.
,
92
, pp.
12
19
.10.1016/j.microrel.2018.11.006
39.
Shapiro
,
D. A.
,
Yu
,
Y. S.
,
Tyliszczak
,
T.
,
Cabana
,
J.
,
Celestre
,
R.
,
Chao
,
W.
,
Kaznatcheev
,
K.
,
Kilcoyne
,
A. L. D.
,
Maia
,
F.
,
Marchesini
,
S.
,
Meng
,
Y. S.
,
Warwick
,
T.
,
Yang
,
L. L.
, and
Padmore
,
H. A.
,
2014
, “
Chemical Composition Mapping With Nanometer Resolution by Soft X-Ray Microscopy
,”
Nat. Photonics
,
8
(
10
), pp.
765
769
.10.1038/nphoton.2014.207
40.
Narikovich
,
A. S.
,
Ershov
,
P. A.
,
Leitsin
,
V. N.
,
Savin
,
V. V.
, and
Snigirev
,
A. A.
,
2017
, “
X-Ray Tomography as a Diagnostic Method of X-Ray Refractive Optics
,”
Instrum. Exp. Tech.
,
60
(
3
), pp.
390
393
.10.1134/S0020441217030125
41.
Giessibl
,
F. J.
,
2003
, “
Advances in Atomic Force Microscopy
,”
Rev. Mod. Phys.
,
75
(
3
), pp.
949
983
.10.1103/RevModPhys.75.949
42.
Ando
,
T.
,
2013
, “
High-Speed Atomic Force Microscopy
,”
Microscopy
,
62
(
1
), pp.
81
93
.10.1093/jmicro/dfs093
43.
Ando
,
T.
,
2018
, “
High-Speed Atomic Force Microscopy and Its Future Prospects
,”
Biophys. Rev.
,
10
(
2
), pp.
285
292
.10.1007/s12551-017-0356-5
44.
Geer
,
R. E.
,
Kolosov
,
O. V.
,
Briggs
,
G. A. D.
, and
Shekhawat
,
G. S.
,
2002
, “
Nanometer-Scale Mechanical Imaging of Aluminum Damascene Interconnect Structures in a Low-Dielectric-Constant Polymer
,”
J. Appl. Phys.
,
91
(
7
), pp.
4549
4555
.10.1063/1.1447330
45.
Kim
,
J. H.
,
Balogun
,
O.
, and
Shah
,
S. P.
,
2018
, “
Atomic Force Acoustic Microscopy to Measure Nanoscale Mechanical Properties of Cement Pastes
,”
Transp. Res. Rec.
,
2141
(
1
), pp.
102
108
.10.3141/2141-17
46.
Chen
,
Z.
,
Li
,
X.
, and
Ding
,
M.
,
2020
, “
An Atomic Force Acoustic Microscopy Image Fusion Method Based on Grayscale Inversion and Selection of Best-Fit Intensity
,”
Appl. Sci.
,
10
(
23
), p.
8645
.10.3390/app10238645
47.
Shekhawat
,
G. S.
, and
Dravid
,
V. P.
,
2005
, “
Nanoscale Imaging of Buried Structures Via Scanning Near-Field Ultrasound Holography
,”
Science
,
310
(
5745
), pp.
89
92
.10.1126/science.1117694
48.
Shekhawat
,
G.
,
Srivastava
,
A.
,
Avasthy
,
S.
, and
Dravid
,
V.
,
2009
, “
Ultrasound Holography for Noninvasive Imaging of Buried Defects and Interfaces for Advanced Interconnect Architectures
,”
Appl. Phys. Lett.
,
95
(
26
), p.
321
.10.1063/1.3263716
49.
Sharahi
,
H. J.
,
Shekhawat
,
G.
,
Dravid
,
V.
,
Egberts
,
P.
, and
Kim
,
S.
,
2017
, “
Towards Non-Invasive High-Resolution 3D Nano-Tomography by Ultrasonic Scanning Probe Microscopy
,”
Proc. SPIE
, 1032408, pp.
1
6
.10.1117/12.2269817
50.
Avasthy
,
S.
,
Shekhawat
,
G. S.
, and
Dravid
,
V. P.
,
2013
, “
Scanning Near-Field Ultrasound Holography
,”
Acoustic Scanning Probe Microscopy. NanoScience and Technology
,
Springer, Berlin, Germany
, pp.
293
313
.
51.
Yang
,
J.
,
Ume
,
I. C.
, and
Zhang
,
L.
,
2010
, “
Defect Detection of Flip Chip Solder Bumps With Wavelet Analysis of Laser Ultrasound Signals
,”
IEEE Trans. Adv. Packag.
,
33
(
1
), pp.
19
29
.10.1109/TADVP.2009.2034634
52.
Sheng
,
L.
,
Ume
,
I. C.
, and
Achari
,
A.
,
2004
, “
Defects Pattern Recognition for Flip-Chip Solder Joint Quality Inspection With Laser Ultrasound and Interferometer
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
1
), pp.
59
66
.10.1109/TEPM.2004.830515
53.
Zhang
,
L. Z.
,
Ume
,
I. C.
,
Gamalski
,
J.
, and
Galuschki
,
K. P.
,
2009
, “
Study of Flip Chip Solder Joint Cracks Under Temperature Cycling Using a Laser Ultrasound Inspection System
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
120
126
.10.1109/TCAPT.2008.2007931
54.
Yang
,
J.
, and
Ume
,
I. C.
,
2010
, “
Laser Ultrasonic Technique for Evaluating Solder Bump Defects in Flip Chip Packages Using Modal and Signal Analysis Methods
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
57
(
4
), pp.
920
932
.10.1109/TUFFC.2010.1496
55.
Reddy
,
V. V. B.
,
Ume
,
I. C.
,
Mebane
,
A.
,
Akinade
,
K.
,
Rogers
,
B.
,
Guirguis
,
C.
,
Patel
,
P. B.
,
Derksen
,
K.
, and
Case
,
R.
,
2019
, “
Evaluation of FCBGA Package Subjected to Four-Point Bend Reliability Test Using Fiber Array Laser Ultrasonic Inspection System
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
9
(
7
), pp.
1219
1226
.10.1109/TCPMT.2019.2911073
56.
Su
,
L.
,
Shi
,
T. L.
,
Li
,
D.
,
Lu
,
X. N.
, and
Liao
,
G. L.
,
2015
, “
Genetic Algorithms for Defect Detection of Flip Chips
,”
Microelectron. Reliab.
,
55
(
1
), pp.
213
220
.10.1016/j.microrel.2014.09.006
57.
Li
,
K.
,
Wang
,
L.
,
Wu
,
J.
,
Zhang
,
Q.
,
Liao
,
G.
, and
Su
,
L.
,
2018
, “
Using GA-SVM for Defect Inspection of Flip Chips Based on Vibration Signals
,”
Microelectron. Reliab.
,
81
, pp.
159
166
.10.1016/j.microrel.2017.12.032
58.
Liu
,
J.
,
Shi
,
T.
,
Wang
,
K.
,
Tang
,
Z.
, and
Liao
,
G.
,
2012
, “
Defect Detection of Flip-Chip Solder Joints Using Modal Analysis
,”
Microelectron. Reliab.
,
52
(
12
), pp.
3002
3010
.10.1016/j.microrel.2012.06.135
59.
Liao
,
G. L.
,
Du
,
L.
,
Su
,
L.
,
Zeng
,
M.
,
Nie
,
L.
, and
Shi
,
T. L.
,
2015
, “
Using RBF Networks for Detection and Prediction of Flip Chip With Missing Bumps
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2817
2825
.10.1016/j.microrel.2015.09.030
60.
Liu
,
J. C.
,
Shi
,
T. L.
,
Xia
,
Q.
, and
Liao
,
G. L.
,
2012
, “
Detection of Solder Bump Defects on a Flip Chip Using Vibration Analysis
,”
Front. Mech. Eng.
,
7
(
1
), pp.
29
37
.10.1007/s11465-012-0314-7
61.
Liu
,
J. C.
,
Shi
,
T. L.
,
Xia
,
Q.
, and
Liao
,
G. L.
,
2012
, “
Flip Chip Solder Bump Inspection Using Vibration Analysis
,”
Microsyst. Technol.
,
18
(
3
), pp.
303
309
.10.1007/s00542-012-1431-2
62.
Su
,
L.
,
Shi
,
T. L.
,
Liu
,
Z.
,
Zhou
,
H.
,
Du
,
L.
, and
Liao
,
G. L.
,
2017
, “
Nondestructive Diagnosis of Flip Chips Based on Vibration Analysis Using PCA-RBF
,”
Mech. Syst. Signal Process.
,
85
, pp.
849
856
.10.1016/j.ymssp.2016.09.030
63.
Xu
,
Z. S.
,
Shi
,
T. L.
,
Lu
,
X. N.
, and
Liao
,
G. L.
,
2014
, “
Using Active Thermography for Defects Inspection of Flip Chip
,”
Microelectron. Reliab.
,
54
(
4
), pp.
808
815
.10.1016/j.microrel.2013.12.015
64.
Chai
,
T. C.
,
Wong
,
B. S.
,
Bai
,
W. M.
,
Trigg
,
A.
, and
Lain
,
Y. K.
,
2003
, “
A Novel Defect Detection Technique Using Active Transient Thermography for High Density Package and Interconnections
,”
Proceedings of the 53rd Electronic Components and Technology Conference
,
New Orleans, LA
,
May 27–30
, pp.
920
925
.10.1109/ECTC.2003.1216400
65.
Lu
,
X. N.
,
Shi
,
T. L.
,
Xia
,
Q.
, and
Liao
,
G. L.
,
2012
, “
Thermal Conduction Analysis and Characterization of Solder Bumps in Flip Chip Package
,”
Appl. Therm. Eng.
,
36
, pp.
181
187
.10.1016/j.applthermaleng.2011.12.028
66.
Lu
,
X. N.
,
He
,
Z. Z.
,
Hu
,
N. N.
,
Su
,
L.
, and
Nie
,
L.
,
2016
, “
Research on Defects Inspection of Solder Bumps Using Active Infrared Thermography Technology
,”
J. Mech. Eng.
,
52
(
10
), pp.
17
24
.10.3901/JME.2016.10.017
67.
Lu
,
X.
,
Liao
,
G.
,
Zha
,
Z.
,
Xia
,
Q.
, and
Shi
,
T.
,
2011
, “
A Novel Approach for Flip Chip Solder Joint Inspection Based on Pulsed Phase Thermography
,”
NDT E Int.
,
44
(
6
), pp.
484
489
.10.1016/j.ndteint.2011.05.003
68.
Han
,
H. D.
,
Xu
,
Y. R.
,
Sun
,
B.
,
He
,
C.
, and
Liao
,
G. L.
,
2020
, “
Using Active Thermography for Defect Detection of Aerospace Electronic Solder Joint Base on the Improved Tiny-YOLOV3 Network
,”
Chin. J. Sci. Instrum.
,
41
(
11
), pp.
42
49
.
69.
Lu
,
X. N.
,
He
,
Z. Z.
,
Su
,
L.
,
Fan
,
M.
,
Liu
,
F.
,
Liao
,
G. L.
, and
Shi
,
T. L.
,
2018
, “
Detection of Micro Solder Balls Using Active Thermography Technology and K-Means Algorithm
,”
IEEE Trans. Ind. Inf.
,
14
(
12
), pp.
5620
5628
.10.1109/TII.2018.2839614
70.
He
,
Z. Z.
,
Li
,
W.
,
Shao
,
M. H.
, and
Lu
,
X. N.
,
2017
, “
Detection of Micro Solder Balls Using Active Thermography and Probabilistic Neural Network
,”
Infrared Phys. Technol.
,
81
(
3
), pp.
236
241
.10.1016/j.infrared.2017.01.008
71.
Lu
,
X. N.
,
Shi
,
T. L.
,
Wang
,
S. Y.
,
Li
,
L. Y.
,
Su
,
L.
, and
Liao
,
G. L.
,
2015
, “
Intelligent Diagnosis of the Solder Bumps Defects Using Fuzzy C-Means Algorithm With the Weighted Coefficients
,”
Sci. China: Technol. Sci.
,
58
(
10
), pp.
1689
1695
.10.1007/s11431-015-5896-y
72.
Wei
,
W.
,
Wei
,
L.
,
Nie
,
L.
,
Su
,
L.
, and
Lu
,
X. N.
,
2015
, “
Using Active Thermography and Modified SVM for Intelligent Diagnosis of Solder Bumps
,”
Infrared Phys. Technol.
,
72
(
9
), pp.
163
169
.10.1016/j.infrared.2015.08.001
73.
Kirtley
,
J. R.
, and
Wikswo
,
J. P.
,
1999
, “
Scanning SQUID Microscopy
,”
Annu. Rev. Mater. Res.
,
29
(
1
), pp.
117
148
.10.1146/annurev.matsci.29.1.117
74.
Knauss
,
L. A.
,
Orozco
,
A.
,
Woods
,
S. I.
, and
Cawthorne
,
A. B.
,
2003
, “
Advances in Scanning SQUID Microscopy for Die-Level and Package-Level Fault Isolation
,”
Microelectron. Reliab.
,
43
(
9–11
), pp.
1657
1662
.10.1016/S0026-2714(03)00296-8
75.
Dechert
,
J.
,
Mueck
,
M.
, and
Heiden
,
C. A.
,
1999
, “
Scanning SQUID Microscope for Samples at Room Temperature
,”
IEEE Trans. Appl. Supercond.
,
9
(
2
), pp.
4111
4114
.10.1109/77.783930
76.
Fleet
,
E. F.
,
Chatraphorn
,
S.
,
Wellstood
,
F. C.
, and
Knauss
,
L. A.
,
2002
, “
HTS Scanning SQUID Microscopy of Active Circuits
,”
IEEE Trans. Appl. Supercond.
,
9
(
2
), pp.
4103
4106
.10.1109/77.783928
77.
Nikawa
,
K.
,
2001
, “
Laser-SQUID Microscopy: Novel Nondestructive and Non-Electrical-Contact Tool for Inspection, Monitoring and Analysis of LSI-Chip-Electrical-Defects
,”
International Microprocesses and Nanotechnology Conference
,
Shimane, Japan
,
Oct. 31–Nov. 2
, pp.
62
63
.10.1109/IMNC.2001.984069
78.
Nikawa
,
K.
,
Inoue
,
S.
,
Nagaishi
,
T.
,
Matsumoto
,
T.
,
Miura
,
K.
, and
Nakamae
,
K.
,
2009
, “
New Approach of Laser-SQUID Microscopy to LSI Failure Analysis
,”
IEICE Trans. Electron.
,
E92-C
(
3
), pp.
327
333
.10.1587/transele.E92.C.327
79.
Beyer
,
J.
,
Drung
,
D.
, and
Schurig
,
T.
,
2001
, “
SQUID Photoscanning: An Imaging Technique for NDE of Semiconductor Wafers and Devices Based on Photomagnetic Detection
,”
IEEE Trans. Appl. Supercond.
,
11
(
1
), pp.
1162
1167
.10.1109/77.919555
80.
Leitão
,
D. C.
,
Borme
,
J.
,
Orozco
,
A.
,
Cardoso
,
S.
, and
Freitas
,
P. P.
,
2013
,
Magnetoresistive Sensors for Surface Scanning
, Vol.
6
,
Springer
,
Berlin
.
81.
Nitsch
,
K.
,
2011
, “
Microelectronic Materials and Structures Characterization by Impedance Spectroscopy
,”
Microelectron. Reliab.
,
51
(
7
), pp.
1213
1218
.10.1016/j.microrel.2011.02.019
82.
Obaid
,
A. A.
,
Yarlagadda
,
S.
,
Yoon
,
M. K.
,
Iii
,
N. E. H.
, and
Domszy
,
A. R. C.
,
2006
, “
A Time-Domain Reflectometry Method for Automated Measurement of Crack Propagation in Composites During Mode I DCB Testing
,”
J. Compos. Mater.
,
40
(
22
), pp.
2047
2066
.10.1177/0021998306061309
83.
Kwon
,
D.
,
Azarian
,
M. H.
, and
Pecht
,
M.
,
2011
, “
Nondestructive Sensing of Interconnect Failure Mechanisms Using Time-Domain Reflectometry
,”
IEEE Sens. J.
,
11
(
5
), pp.
1236
1241
.10.1109/JSEN.2010.2088118
84.
Abessolo-Bidzo
,
D.
,
Poirier
,
P.
,
Descamps
,
P.
, and
Domengès
,
B.
,
2005
, “
Isolating Failing Sites in IC Packages Using Time Domain Reflectometry: Case Studies
,”
Microelectron. Reliab.
,
45
(
9–11
), pp.
1639
1644
.10.1016/j.microrel.2005.07.068
85.
Matsumoto
,
K.
,
Otsuka
,
H.
,
Horiuchi
,
O.
,
Han
,
Y. G.
,
Choi
,
W.
, and
Tomokage
,
H.
,
2013
, “
Identification of Through-Silicon Via (TSV) Failure Points Using the Time Domain Reflectometry (TDR) Method
,”
Trans. Jpn. Inst. Electron. Packag.
,
6
(
1
), pp.
57
62
.10.5104/jiepeng.6.57
86.
Kang
,
T. Y.
,
Seo
,
D.
,
Min
,
J.
, and
Kim
,
T. S.
,
2021
, “
Quantification of Performance Variation and Crack Evolution of Bond-Wire Interconnects Under Harsh Temperature Environments by S-Parameter Analysis
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
11
(
6
), pp.
990
998
.10.1109/TCPMT.2021.3081399
87.
Pascal
,
Y.
,
Daschner
,
F.
,
Liserre
,
M.
, and
Höft
,
M.
,
2022
, “
Condition Monitoring of Power Module Using S-Parameters, TDR, and TDT
,”
Microelectron. Reliab.
,
138
, p.
114615
.10.1016/j.microrel.2022.114615
88.
Belaïd
,
M. A.
,
2018
, “
Performance Analysis of S-Parameter in N-MOSFET Devices After Thermal Accelerated Tests
,”
Microelectron. Reliab.
,
91
, pp.
8
14
.10.1016/j.microrel.2018.07.133
89.
Krause
,
M.
,
Altmann
,
F.
,
Schmidt
,
C.
,
Petzold
,
M.
,
Malta
,
D.
, and
Temple
,
D.
,
2011
, “
Characterization and Failure Analysis of TSV Interconnects: From Non-Destructive Defect Localization to Material Analysis With Nanometer Resolution
,”
Proceedings of the 2011 IEEE 61st Electronic Components and Technology Conference
,
Lake Buena Vista, FL
,
May 31–June 3
, pp.
1452
1458
.10.1109/ECTC.2011.5898702
90.
Li
,
Z. Z.
,
Lee
,
S.
,
Lewis
,
B. J.
,
Houston
,
P. N.
,
Baldwin
,
D. F.
,
Stout
,
G.
,
Tessier
,
T.
, and
Evans
,
J. L.
,
2010
, “
Sensitivity Analysis of Pb Free Reflow Profile Parameters Toward Flip Chip on Silicon Assembly Yield, Reliability and Intermetallic Compound Characteristics
,”
Proceedings of the 60th Electronic Components and Technology Conference
,
Las Vegas, NV
,
June 1–4
, pp.
1132
1138
.10.1109/ECTC.2010.5490844
91.
Woychik
,
C. G.
,
Lee
,
S.
,
McGrath
,
S.
,
Tosaya
,
E.
, and
Arkalgud
,
S.
,
2015
, “
New Approaches to Develop a Scalable 3D IC Assembly Method
,” Invensas Corporation,
San Diego, CA
.
92.
Wang
,
Y.
,
Chae
,
S. H.
,
Dunne
,
R.
,
Takahashi
,
Y.
,
Mawatari
,
K.
,
Steinmann
,
P.
,
Bonifield
,
T.
,
Jiang
,
T. F.
,
Im
,
J.
, and
Ho
,
P. S.
,
2012
, “
Effect of Intermetallic Formation on Electromigration Reliability of TSV-Microbump Joints in 3D Interconnect
,”
Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference
,
San Diego, CA
,
May 29–June 1
, pp.
319
325
.10.1109/ECTC.2012.6248849
93.
Hirohata
,
A.
,
Yamamoto
,
Y.
,
Murphy
,
B. A.
, and
Vick
,
A. J.
,
2016
, “
Non-Destructive Imaging of Buried Electronic Interfaces Using a Decelerated Scanning Electron Beam
,”
Nat. Commun.
,
7
(
1
), p.
12701
.10.1038/ncomms12701
94.
Dick
,
P.
,
2000
, “
Scanning Electron Microscope, a Valuable NDT Method
,”
Proceedings of the 15th World Conference on Nondestructive Testing
,
Rome, Italy
,
Oct. 15–21
.
95.
Wolter
,
K. J.
,
Oppermann
,
M.
, and
Zema
,
T.
,
2008
, “
Nano Packaging-A Challenge for Non-Destructive Testing
,”
Proceedings of the 10th Electronics Packaging Technology Conference
,
Singapore
,
Dec. 9–12
, pp.
873
878
.10.1109/EPTC.2008.4763540
96.
Kim
,
C. S.
, and
Park
,
I. K.
,
2012
, “
Review of Micro/Nano Nondestructive Evaluation Technique (I): Surface and Subsurface Investigation
,”
J. Korean Soc. Nondestr. Test.
,
32
(
2
), pp.
198
209
.10.7779/JKSNT.2012.32.2.198
97.
Kemper
,
B.
, and
Von
,
B. G.
,
2008
, “
Digital Holographic Microscopy for Live Cell Applications and Technical Inspection
,”
Appl. Opt.
,
47
(
4
), pp.
A52
61
.10.1364/AO.47.000A52
98.
Ma
,
S. J.
,
Liu
,
W. H.
, and
Zhou
,
P. F.
,
2019
, “
Off-Axis Digital Holographic Microscopic Phase Automatic Compensation Method
,”
J. Northeast. Univ. (Nat. Sci.)
,
40
(
6
), pp.
847
851
.
99.
Zhang
,
Y. S.
,
Ma
,
H. W.
,
Wang
,
X.
, and
Wang
,
H. T.
,
2016
, “
Design of Pulse Laser Digital Holography Device and Its Control System
,”
J. Xi'an Univ. Sci. Technol.
,
36
(
6
), pp.
863
868
.
100.
Wang
,
X.
,
Zhang
,
G. M.
,
Ma
,
H. W.
,
Zhang
,
Y. S.
, and
Wang
,
D. D.
,
2018
, “
Measurement of a 3D Ultrasonic Wavefield Using Pulsed Laser Holographic Microscopy for Ultrasonic Nondestructive Evaluation
,”
Sensors
,
18
(
2
), p.
573
.10.3390/s18020573
101.
Zhang
,
Y. S.
,
2019
, “
Study on Propagation Mechanism of Near Field Ultrasound in Micro Mechanical Structure
,” Ph.D. dissertation,
Xi'an University of Science and Technology
,
Xi'an, China
.
102.
Wang
,
X.
,
Gao
,
L.
,
Wang
,
Y.
, and
Wang
,
H. T.
,
2020
, “
Design of a Hybrid Ultrasound and Digital Holography Imaging System for Detection of Internal Micro-Defects
,”
Infrared Laser Eng.
,
49
(
7
), pp.
141
151
.10.3788/IRLA20190518
103.
Wang
,
X.
,
2018
, “
Research on Imaging of Dynamic Ultrasonic Wavefields of Internal Defects in Micro Mechanical Structure Based on Digital Holographic Interferometry
,” Ph.D. dissertation,
Xi'an University of Science and Technology
,
Xi'an, China
.
104.
Ma
,
H. W.
,
Zhang
,
Y. S.
,
Wang
,
X.
, and
Guan
,
Z. Y.
,
2019
, “
Ultrasonic Wave-Micro Defect Coupled Sound Field Characteristics Based on Acoustic Holography
,”
J. Vib. Shock
,
38
(
3
), pp.
75
79
.https://jvs.sjtu.edu.cn/EN/abstract/abstract8234.shtml
105.
Zhang
,
Y. S.
,
Ma
,
H. W.
,
Wang
,
H. T.
, and
Wang
,
X.
,
2018
, “
Study on Near Field Sound Pressure of Circular Piston Sound Source Based on Spatial Fourier Transform
,”
Piezoelectr. Acoustoopt.
,
40
(
2
), pp.
257
261
.
106.
Wang
,
X.
,
Ma
,
H. W.
,
Wang
,
D. D.
,
Dong
,
M.
,
Zhang
,
Y. S.
, and
Wang
,
H. T.
,
2017
, “
Digital Holography Based on Compressed Sensing
,”
China Sci. Pap.
,
12
(
16
), pp.
1848
1853
.
107.
Wang
,
X.
,
Ma
,
H. W.
,
Wang
,
D. D.
,
Dong
,
M.
,
Zhang
,
Y. S.
, and
Wang
,
H. T.
,
2016
, “
Automatic Phase Aberration Compensation and Imaging of Digital Holographic Microscopy
,”
Proceedings of the 2nd International Conference on Photonics and Optical Engineering
,
Xi'an, China
, Oct. 14–17, pp.
14
17
.
108.
Wang
,
X.
,
Ma
,
H. W.
,
Wang
,
D. D.
,
Dong
,
M.
, and
Zhang
,
Y. S.
,
2017
, “
Digital Holography Parameter Optimization
,”
J. Xi'an Univ. Sci. Technol.
,
37
(
1
), pp.
127
132
.
109.
Liang
,
S. N.
,
2023
, “
Study on Parameter Optimization of Optical Path and Noise Suppression of Reconstructed Image in Digital Holography
,” Master dissertation,
Xi'an University of Science and Technology
,
Xi'an, China
.
110.
Chen
,
Y.
,
Liu
,
D. X.
,
Liang
,
S. N.
,
Ma
,
H. W.
,
Wang
,
Z. Y.
,
Dong
,
M.
, and
Wan
,
X.
,
2023
, “
Noise Suppression in the Reconstructed Image of Digital Holography Based on the BEMDV Method Using Improved Particle Swarm Optimization
,”
Appl. Opt.
,
62
(
19
), pp.
5159
5169
.10.1364/AO.492220
You do not currently have access to this content.