Abstract

With the increasing interconnect density of electronic components, copper–copper direct bonding technology has garnered increasing attention from researchers. The electroplating bonding method is an efficient copper pillar interconnection technique that can be implemented at room temperature and atmospheric pressure. comsol simulation results show that under convective conditions, the plating layer primarily deposits on the convection exit side of the copper plate. Under weak convection and low current density, the plating exhibits deposition characteristics that conform to the substrate surface. As convection intensity increases, preferential deposition begins to occur, although the overall deposition rate decreases. At this point, when the current density is increased, the deposition pattern predominantly shows preferential deposition; however, excessively high current density can lead to copper deposition in nonbonding areas. Orthogonal experimental results indicate that, within the accelerator bis(3-sulfopropyl) disulfide (SPS)–inhibitor polyethylene glycol (PEG)–leveling agent Jenner Green B (JGB)–chloride ion (Cl) system, the influence of the four additives on bonding strength follows this order: JGB > Cl > SPS > PEG. The optimal formulation derived from the orthogonal experiments is SPS 2 ppm, PEG (8000) 150 ppm, JGB 5 ppm, and Cl 30 ppm, which results in a shear strength of 123.2 MPa. These findings suggest that high-strength copper pillar interconnections can be achieved by adjusting physical parameters such as the electric field, flow field, and additive concentrations.

References

1.
Lau
,
J. H.
,
1994
,
Handbook of Fine Pitch Surface Mount Technology
, Springer, New York.
2.
Fang
,
M.
,
Tang
,
C.
,
Chen
,
Y.
,
Li
,
J.
,
Chen
,
Z.
,
Wang
,
F.
, and
Zhu
,
W.
,
2022
, “
Thermo-Compression Bonding Process Characteristics and Shape Control of Cu-Pillar Microbump Joints by Optimizing of Solder Melting
,”
J. Mater. Sci.: Mater. Electron.
,
33
(
13
), pp.
10471
10485
.10.1007/s10854-022-08034-x
3.
Gerber
,
M.
,
Beddingfield
,
C.
,
O’Connor
,
S.
,
Yoo
,
M.
,
Lee
,
M.
,
Kang
,
D.
,
Park
,
S.
, et al.,
2011
, “
Next Generation Fine Pitch Cu Pillar Technology—Enabling Next Generation Silicon Nodes
,” 2011 IEEE 61st Electronic Components and Technology Conference (
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
612
618
.10.1109/ECTC.2011.5898576
4.
Zhang
,
L.
,
Ou
,
S.
,
Huang
,
J.
,
Tu
,
K. N.
,
Gee
,
S.
, and
Nguyen
,
L.
,
2006
, “
Effect of Current Crowding on Void Propagation at the Interface Between Intermetallic Compound and Solder in Flip Chip Solder Joints
,”
Appl. Phys. Lett.
,
88
(
1
), p.
012106
.10.1063/1.2158702
5.
Yang
,
H. W.
, and
Kao
,
C. R.
,
2016
, “
Morphological Evolution Induced by Volume Shrinkage in Micro Joints
,” 2016 International Conference on Electronics Packaging (
ICEP
), Hokkaido, Japan, Apr. 20–22, pp.
286
289
.10.1109/ICEP.2016.7486830
6.
Tu
,
K. N.
,
2011
, “
Reliability Challenges in 3D IC Packaging Technology
,”
Microelectron. Reliab.
,
51
(
3
), pp.
517
523
.10.1016/j.microrel.2010.09.031
7.
Orii
,
Y.
,
Toriyama
,
K.
,
Kohara
,
S.
, Noma, H., Okamoto, K., Toyoshima, D., and Uenishi, K.,
2011
, “
Effect of Preformed IMC Layer on Electromigration of Peripheral Ultra Fine Pitch C2 Flip Chip Interconnection With Solder Capped Cu Pillar Bump
,” 2011 Sixth International Microsystems, Packaging, Assembly and Circuits Technology Conference (
IMPACT
), Taipei, Taiwan, Oct. 19–21, pp.
206
209
.10.1109/IMPACT.2011.6117170
8.
Gueguen, P.,
Di Cioccio
,
L.
,
Morfouli
,
P.
,
Zussy
,
M.
, Dechamp, J., Bally, L., and Clavelier, L.,
2010
, “
Copper Direct Bonding: An Innovative 3D Interconnect
,”
59th Electronic Components and Technology Conference
, Las Vegas, NV, June 1–4.10.1109/ECTC.2010.5490697
9.
Kim
,
J. W.
,
Jeong
,
M. H.
, and
Park
,
Y. B.
,
2012
, “
Effect of HF & H2SO4 Pretreatment on Interfacial Adhesion Energy of Cu–Cu Direct Bonds
,”
Microelectron. Eng.
,
89
, pp.
42
45
.10.1016/j.mee.2011.06.002
10.
Joung
,
Y. H.
,
2003
, “
Electroplating Bonding Technology for Chip Interconnect, Wafer Level Packaging and Interconnect Layer Structures
,”
Ph.D. dissertation
,
Georgia Institute of Technology
, Atlanta, GA.https://www.proquest.com/openview/a6d42b6d37513af276b10eadc2a901d0/1?pq-origsite=gscholar&cbl=18750&diss=y
11.
Cho
,
S. K.
, and
Kim
,
J. J.
,
2006
, “
Leveling With Step Potential in Damascene Cu Electrodeposition
,”
J. Electrochem. Soc.
,
153
(
12
), p.
C822
.10.1149/1.2354459
12.
Wang
,
Z.-Y.
,
Jin
,
L.
,
Yang
,
J.-Q.
,
Li
,
W.-Q.
,
Wu
,
D.-Y.
,
Zhan
,
D.
,
Yang
,
F.-Z.
, and
Sun
,
S.-G.
,
2023
, “
A Transfer-Adsorption Model for Forward Understanding the Synergistic Effects of Additives in Through-Hole Uniform Copper Thickening
,”
J. Electroanal. Chem.
,
936
, p.
117373
.10.1016/j.jelechem.2023.117373
13.
Jones
,
T. D. A.
,
Bernassau
,
A.
,
Flynn
,
D.
,
Price
,
D.
,
Beadel
,
M.
, and
Desmulliez
,
M. P. Y.
,
2018
, “
Copper Electroplating of PCB Interconnects Using Megasonic Acoustic Streaming
,”
Ultrason. Sonochem.
,
42
, pp.
434
444
.10.1016/j.ultsonch.2017.12.004
14.
Pan
,
L.-W.
,
Yuen
,
P.
,
Lin
,
L.
, and
Garcia
,
E. J.
,
2003
, “
Flip Chip Electrical Interconnection by Selective Electroplating and Bonding
,”
Microsyst. Technol.
,
10
(
1
), pp.
7
10
.10.1007/s00542-002-0189-3
15.
Yuan
,
B.
,
Chen
,
X.
,
Zhao
,
Y.
,
Zhou
,
W.
,
Li
,
X.
, and
Wang
,
L.
,
2023
, “
Unveiling the Potential and Mechanisms of 3, 3′-Bicarbazole-Based Quaternary Ammonium Salts as Levelers
,”
Electrochim. Acta
,
471
, p.
143345
.10.1016/j.electacta.2023.143345
16.
Ji
,
L. X.
,
Wang
,
C.
,
Wang
,
S. X.
,
He
,
W.
, and
Xiao
,
D. J.
,
2016
, “
An Electrochemical Model for Prediction of Microvia Filling Process
,”
Trans. IMF
,
94
(
1
), pp.
49
56
.10.1080/00202967.2015.1124638
17.
Xiang
,
J.
,
Chen
,
Y.
,
Wang
,
S.
,
Wang
,
C.
,
He
,
W.
,
Zhang
,
H.
,
Jin
,
X.
,
Chen
,
Q.
, and
Su
,
X.
,
2018
, “
Improvement of Plating Uniformity for Copper Patterns of IC Substrate With Multi-Physics Coupling Simulation
,”
Circuit World
,
44
(
3
), pp.
150
160
.10.1108/CW-12-2017-0078
18.
Joung
,
Y. H.
,
Nuttinck
,
S.
,
Yoon
,
S. W.
,
Allen
,
M. G.
, and
Laskar
,
J.
,
2002
, “
Integrated Inductors in the Chip-to-Board Interconnect Layer Fabricated Using Solderless Electroplating Bonding
,”
IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278
), Seattle, WA, June 2–7, Vol.
3
, pp.
1409
1412
.10.1109/MWSYM.2002.1012119
19.
Joung
,
Y. H.
, and
Allen
,
M. G.
,
2007
, “
Chip-to-Board Micromachining for Interconnect Layer Passive Components
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
15
23
.10.1109/TCAPT.2007.892062
20.
Joung
,
Y. H.
, and
Allen
,
M. G.
,
2008
, “
Inter-Substrate Microstructure Formation by Electroplating Bonding Technology
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045020
.10.1088/0960-1317/18/4/045020
21.
Dow
,
W.-P.
,
Li
,
C.-C.
,
Su
,
Y.-C.
,
Shen
,
S.-P.
,
Huang
,
C.-C.
,
Lee
,
C.
,
Hsu
,
B.
, and
Hsu
,
S.
,
2009
, “
Microvia Filling by Copper Electroplating Using Diazine Black as a Leveler
,”
Electrochim. Acta
,
54
(
24
), pp.
5894
5901
.10.1016/j.electacta.2009.05.053
22.
Wang
,
Q.
,
Cheng
,
T.
,
Chen
,
F.
, and Cheng, M.,
2020
, “
Study on Direct Current Cu Electroplating in Through Ceramic Holes for High-Power LED Packaging
,” 2020 21st International Conference on Electronic Packaging Technology (
ICEPT
), Guangzhou, China, Aug. 12–15, pp.
1
5
.10.1109/ICEPT50128.2020.9202962
23.
Dow
,
W. P.
, and
Liu
,
C. W.
,
2006
, “
Evaluating the Filling Performance of a Copper Plating Formula Using a Simple Galvanostat Method
,”
J. Electrochem. Soc.
,
153
(
3
), p.
C190
.10.1149/1.2165743
24.
Dow
,
W.-P.
,
Yen
,
M.-Y.
,
Chou
,
C.-W.
,
Liu
,
C.-W.
,
Yang
,
W.-H.
, and
Chen
,
C.-H.
,
2006
, “
Practical Monitoring of Filling Performance in a Copper Plating Bath
,”
Electrochem. Solid-State Lett.
,
9
(
8
), p.
C134
.10.1149/1.2205047
25.
Dow
,
W.-P.
,
Yen
,
M.-Y.
,
Liu
,
C.-W.
, and
Huang
,
C.-C.
,
2008
, “
Enhancement of Filling Performance of a Copper Plating Formula at Low Chloride Concentration
,”
Electrochim. Acta
,
53
(
10
), pp.
3610
3619
.10.1016/j.electacta.2007.12.048
26.
Moffat
,
T. P.
,
Wheeler
,
D.
, and
Josell
,
D.
,
2004
, “
Electrodeposition of Copper in the SPS-PEG-Cl Additive System: I. Kinetic Measurements: Influence of SPS
,”
J. Electrochem. Soc.
,
151
(
4
), p.
C262
.10.1149/1.1651530
27.
Kelly
,
J. J.
, and
West
,
A. C.
,
1998
, “
Copper Deposition in the Presence of Polyethylene Glycol: I. Quartz Crystal Microbalance Study
,”
J. Electrochem. Soc.
,
145
(
10
), pp.
3472
3476
.10.1149/1.1838829
28.
Dow
,
W.-P.
,
Yen
,
M.-Y.
,
Liao
,
S.-Z.
,
Chiu
,
Y.-D.
, and
Huang
,
H.-C.
,
2008
, “
Filling Mechanism in Microvia Metallization by Copper Electroplating
,”
Electrochim. Acta
,
53
(
28
), pp.
8228
8237
.10.1016/j.electacta.2008.06.042
29.
Yang
,
H.
,
Wang
,
Y.
,
Chen
,
M.
,
Liu
,
J.
,
Liu
,
Y.
,
Chen
,
T.
, and
Li
,
J.
,
2023
, “
Research on Electroplating Bonding of Flip-Chip Under the Action of Additives
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
13
(
8
), pp.
1324
1331
.10.1109/TCPMT.2023.3301184
30.
Wang
,
Q.
,
Wang
,
Z.
,
Wang
,
Y.
,
Tong
,
Y.
, and
Chen
,
M.
,
2022
, “
Combined Fluid Flow Simulation With Electrochemical Measurement for Mechanism Investigation of High-Rate Cu Pattern Electroplating
,”
J. Taiwan Inst. Chem. Eng.
,
139
, p.
104528
.10.1016/j.jtice.2022.104528
You do not currently have access to this content.