The prevailing beliefs in the scientific and engineering literature are that: (i) thermodynamics is explained and justified by statistical mechanics; (ii) entropy is a statistical measure of disorder; and (iii) for given values of energy, volume, and amounts of constituents, the largest value of entropy corresponds to both a thermodynamic equilibrium state and the ultimate disorder. In this paper, we provide: (i) a summary of the beliefs as stated by some eminent scientists; (ii) experimental evidence that casts serious doubt about the validity of the beliefs; (iii) an outline of a nonstatistical unified quantum theory of mechanics and thermodynamics; (iv) an outline of a nonquantal, nonstatistical exposition of thermodynamics, valid for all systems (both macroscopic and microscopic), and for all states (both thermodynamic equilibrium and not thermodynamic equilibrium); (v) the definition and analytical expression of the entropy of thermodynamics; (vi) the interpretation of entropy as both a measure of the quantum-theoretic spatial shape of a molecule, and an indicator of order; and (vii) nonstatistical answers to the questions that motivated the introduction of statistical mechanics.

1.
Clausius, R., 1867, “On Different Forms of the Fundamental Equations of the Mechanical Theory of Heat and their Convenience for Application,” The Second Law of Thermodynamics, 1976, J. Kestin, ed., Dowden, Hutchinson, and Ross, Inc., Stroudsburg, PA, pp. 162–193.
2.
Maxwell, J. C., 1871, Theory of Heat, Longmans, Green and Co., London, UK, Chapter 12.
3.
McQuarrie, D. A., 1973, Statistical Thermodynamics, Harper and Row, New York, NY.
4.
Callen, H. B., 1985, Thermodynamics and an Introduction to Thermostatics, 2nd Edition, John Wiley and Sons, New York, NY.
5.
Tolman, R. C., 1962, The Principles of Statistical Mechanics, Oxford University Press, London, UK, pp. 16–42.
6.
Thomson
,
W.
,
1879
, “
The Sorting Demon of Maxwell
,”
R. Soc. Proc.
,
9
, pp.
113
114
.
7.
Brush, S. G., 1986, The Kind of Motion We Call Heat, North-Holland, New York, p. 83.
8.
Brush, S. G., 1986, ibid., pp. 231–243.
9.
Brush, S. G., 1986, ibid., pp. 80–89.
10.
Brillouin, L., 1962, Science and Information Theory, Academic Press Inc., New York, pp. 160–161.
11.
Feynmann, R.P., Leighton, R. B., and Sands, M., 1963, The Feynmann Lectures on Physics, Addison Wesley Publishing Co., Reading, MA, pp. 46-1–46-9.
12.
Penrose, R., 1989, The Emperor’s New Mind, Oxford University Press, New York, NY, pp. 308–310.
13.
Denbigh, K., 1968, The Principles of Chemical Equilibrium, Cambridge University Press, London, UK, pp. 55–56.
14.
Gyftopoulos, E.P., and Beretta, G. P., 1991, Thermodynamics: Foundations and Applications, Macmillan, New York, NY, pp. 10–17, 20.
15.
Gyftopoulos, E. P., and Beretta, G. P., 1991, ibid., Ch. 5.
16.
Hatsopoulos
,
G. N.
, and
Gyftopoulos
,
E. P.
,
1976
, “
A Unified Quantum Theory of Mechanics and Thermodynamics. Part I. Postulates
,”
Found. Phys.
,
6
, No.
1
, pp.
15
31
.
17.
Hatsopoulos
,
G. N.
, and
Gyftopoulos
,
E. P.
,
1976
, “
A Unified Quantum Theory of Mechanics and Thermodynamics. Part IIa. Available Energy
,”
Found. Phys.
,
6
, No.
2
, pp.
127
141
.
18.
Hatsopoulos
,
G. N.
, and
Gyftopoulos
,
E. P.
,
1976
, “
A Unified Quantum Theory of Mechanics and Thermodynamics. Part IIb. Stable Equilibrium States
,”
Found. Phys.
,
6
, No.
4
, pp.
439
455
.
19.
Hatsopoulos
,
G. N.
, and
Gyftopoulos
,
E. P.
,
1976
, “
A Unified Quantum Theory of Mechanics and Thermodynamics. Part III. Irreducible Quantal Dispersions
,”
Found. Phys.
,
6
, No.
5
, pp.
561
570
.
20.
von Neumann, J., 1955, Mathematical Foundations of Quantum Mechanics, Princeton University Press, NJ.
21.
Gyftopoulos
,
E. P.
, and
C¸ubukc¸u
,
E.
,
1997
, “
Entropy: Thermodynamic Definition and Quantum Expression
,”
Phys. Rev.
,
55
, No.
4
, pp.
3851
3858
.
22.
Gyftopoulos, E. P., 1998, “Pictorial Visualization of the Entropy of Thermodynamics,” Proc., International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy Systems and Processes, M. Feidt et al., eds., Nancy, France, pp. 3–28.
23.
Tolman, R. C., 1962, op. cit., pp. 335–339.
24.
Beretta
,
G. P.
,
Gyftopoulos
,
E. P.
,
Park
,
J. L.
, and
Hatsopoulos
,
G. N.
,
1984
, “
Quantum Thermodynamics. A New Equation of Motion for a Single Constituent of Matter
,”
Nuovo Cimento Soc. Ital. Fis., B
,
82B
, pp.
169
191
.
25.
Beretta
,
G. P.
,
Gyftopoulos
,
E. P.
, and
Park
,
J. L.
,
1985
, “
Quantum Thermodynamics. A New Equation of Motion for a General Quantum System
,”
Nuovo Cimento Soc. Ital. Fis., B
,
87B
, No.
1
, pp.
77
97
.
26.
Korsch
,
J. H.
, and
Steffen
,
H.
,
1987
, “
Dissipative Quantum Dynamics, Entropy Production and Irreversible Evolution Towards Equilibrium
,”
J. Phys. A (Math. & Gen.)
,
20
, pp.
3787
3808
.
27.
C¸ubukc¸u, E., and Gyftopoulos, E. P., 1995, “On the Equation of Motion of Thermodynamics”, Proc. International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems, Y. A. Go¨gu¨s et al., eds., Istanbul, Turkey, pp. 69–74.
28.
Gyftopoulos, E. P., and Beretta, G. P., 1991, op. cit.
29.
Gyftopoulos, E. P., and Beretta, G. P., 1991, op. cit., pp. 102–112.
30.
Gyftopoulos
,
E. P.
,
1998
, “
Thermodynamic Definition and Quantum-Theoretic Pictorical Illustration of Entropy
,”
ASME J. Energy Resour. Technol.
,
120
, pp.
154
160
.
31.
Gyftopoulos, E. P., and Beretta, G. P., 1991, op. cit., pp. 186–205.
32.
Brandt, H., and Dahmen, H. D., 1995, The Picture Book of Quantum Mechanics, 2nd Edition, Springer-Verlag, New York, NY, p. 106.
33.
Leighton, R. B., 1959, Principles of Modern Physics, McGraw-Hill, New York, NY, pp. 178–179.
34.
Beretta, G. P., and Gyftopoulos, E. P., 1990, “Electromagnetic Radiation: A Carrier of Energy and Entropy,” Fundamentals of Thermodynamics and Energy Analysis, AES20, G. Tsatsaronis et al., eds., Dallas, TX, pp. 1–6.
35.
Leff, H. S., and Rex, A. F., 1990, Maxwell’s Demon: Entropy, Information, Computing, Princeton University Press, Princeton, NJ.
36.
Gyftopoulos
,
E. P.
,
1998
, “
Maxwell’s and Boltzmann’s Triumphant Contributions to and Misconceived Interpretations of Thermodynamics
,”
Int. J. Appl. Thermodynam.
,
1
, Nos.
1–4
, pp.
9
19
.
37.
von Smoluchowski, M., 1914, Vortra¨ge u¨ber die Kinetische Theorie der Materie und der Elektrizita¨t, Teubner, Leipzig, Germany pp. 89–121.
38.
Lebowitz
,
J. L.
,
1993
, “
Boltzmann’s Entropy and Time’s Arrow
,”
Phys. Today
,
46
, No.
9
, pp.
32
38
.
39.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
, No.
4
, pp.
620
630
.
40.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics. II
,”
Phys. Rev.
,
108
, No.
2
, pp.
171
190
.
41.
Katz, A., 1967, Principles of Statistical Mechanics, The Information Theory Approach, W. H. Freeman and Co., San Francisco, CA.
You do not currently have access to this content.