A polymer electrolyte membrane (PEM) fuel cell is analyzed by applying the conservation principle to the electrode backing, catalyst layers and polymer electrolyte. The conservation equations used are the conservation of species, momentum and energy, with the Nernst-Planck equation used for the electrolyte. Oxygen reduction at the cathode is modeled using the Butler-Volmer equation while the adsorption, desorption and electro-oxidation of hydrogen and CO at the anode are modeled by the Tafel-Volmer and “reactant-pair” mechanism, respectively. Temperature variations within the cell are minimized by decreasing current density or increasing temperature. An increase in pressure increases the cell voltage at low current density, but decreases the cell voltage at high current density. The electrochemical kinetics model used for the adsorption, desorption and electro-oxidation of hydrogen and CO is validated with published, experimental data.

1.
Aceves
,
S.
, and
Berry
,
G.
,
1998
, “
Thermodynamics of Insulated Pressure Vessels for Vehicular Hydrogen Storage
,”
J. Energy Resour. Technol.
,
120
(
2
), pp.
137
142
.
2.
Divisek
,
J.
,
Oetjen
,
H.-F.
,
Peinecke
,
V.
,
Schmidt
,
V.
, and
Stimming
,
U.
,
1998
, “
Components for PEM Fuel Cell Systems Using Hydrogen and CO Containing Fuels
,”
Electrochim. Acta
,
43
(
24
), pp.
3811
3815
.
3.
Watkins, D., 1993, “Research, Development and Demonstration of Solid Polymer Fuel Cell Systems,” Fuel Cell Systems, L. Blomen et al., eds., Plenum Press, New York, NY, pp. 493–530.
4.
Kim
,
J.
,
Lee
,
S.-M.
, and
Srinivasan
,
S.
,
1995
, “
Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation
,”
J. Electrochem. Soc.
,
142
(
8
), pp.
2670
2674
.
5.
Amphlett
,
J.
,
Baumert
,
R.
,
Mann
,
R.
,
Peppley
,
B.
,
Roberge
,
P.
, and
Harris
,
T.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell II. Empirical Model Development
,”
J. Electrochem. Soc.
,
142
(
1
), pp.
9
15
.
6.
Rodrigues, A., Amphlett, J., Mann, R., Peppley, B., and Roberge, P., 1997, “Carbon Monoxide Poisoning of Proton-Exchange-Membrane Fuel Cells,” Proceedings of the Intersociety Energy Conversion Engineering Conference, E. Cairns et al., eds., IEEE, Piscataway, NJ, 2, pp. 768–773.
7.
Bellows
,
R.
,
Marucchi-Soos
,
E.
, and
Buckley
,
D.
,
1996
, “
Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation
,”
Industrial and Engineering Chemistry Research
,
35
(
4
), pp.
1235
1242
.
8.
Bernardi
,
D.
, and
Verbrugge
,
M.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
9.
Wang
,
J.-T.
, and
Savinell
,
R.
,
1992
, “
Simulation Studies on the Fuel Electrode of a H2−O2 Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
,
37
(
15
), pp.
2737
2745
.
10.
Dhar
,
H.
,
Christner
,
L.
, and
Kush
,
A.
,
1987
, “
Nature of CO Adsorption During H2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel Cell Anode
,”
J. Electrochem. Soc.
,
134
(
12
), pp.
3021
3026
.
11.
Springer
,
T.
,
Wilson
,
M.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3513
3526
.
12.
Weisbrod, K., Grot, S., and Vanderborgh, N., 1995, “Through-the-Electrode Model of a Proton Exchange Membrane Fuel Cell,” Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, S. Gottesfeld et al., eds., The Electrochemical Society, Pennington, NJ, 95-23, pp. 152–166.
13.
Marr, C., and Li, X., 1998, “An Engineering Model of Proton Exchange Membrane Fuel Cell Performance,” ARI, 50, pp. 190–200.
14.
Baschuk
,
J.
, and
Li
,
X.
,
2000
, “
Modeling of Polymer Electrolyte Membrane Fuel Cells with Variable Degrees of Water Flooding
,”
J. Power Sources
,
86
(
1–2
), pp.
181
196
.
15.
Wo¨hr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
,
1998
, “
Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation
,”
Int. J. Hydrogen Energy
,
23
(
3
), pp.
213
218
.
16.
Rowe
,
A.
, and
Li
,
X.
,
2001
, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
102
(
1–2
), pp.
82
96
.
17.
Fuller
,
T.
, and
Newman
,
J.
,
1993
, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
5
), pp.
1218
1225
.
18.
Nguyen
,
T.
, and
White
,
R.
,
1993
, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
8
), pp.
2178
2186
.
19.
van Bussel
,
H.
,
Koene
,
F.
, and
Mallant
,
R.
,
1998
, “
Dynamic Model of Solid Polymer Fuel Cell Water Management
,”
J. Power Sources
,
71
(
1–2
), pp.
218
222
.
20.
Wang, C., Wang, Z., and Pan, Y., 1999, “Two-Phase Transport in Proton Exchange Membrane Fuel Cells,” Proceedings of the ASME Heat Transfer Division, L. White, ed., ASME, Fairfield, NJ, 364-1, pp. 351–357.
21.
Springer
,
T.
,
Rockward
,
T.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
S.
,
2001
, “
Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed. Effects of CO, H2 Dilution, and High Fuel Utilization
,”
J. Electrochem. Soc.
,
148
(
1
), pp.
A11–A23
A11–A23
.
22.
Shimpalee, S., Dutta, S., Lee, W., and Van Zee, J., 1999, “Effect of Humidity on PEM Fuel Cell Performance Part II-Numerical Simulation,” Proceedings of the ASME Heat Transfer Division, L. White, ed., ASME, Fairfield, NJ, 364-1, pp. 367–374.
23.
Baschuk, J., 2001, “Modeling of Polymer Electrolyte Membrane Fuel Cells and Stacks with Carbon Monoxide Poisoning,” M.A.Sc. thesis, University of Waterloo, Waterloo, ON, Canada.
24.
Gilman
,
S.
,
1964
, “
The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum II: the “Reactant Pair” Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanol
,”
J. Electrochem. Soc.
,
68
(
1
), pp.
70
80
.
25.
Stonehart
,
P.
, and
Ross
,
P.
,
1975
, “
The Commonality of Surface Processes in Electrocatalysis and Gas-Phase Heterogeneous Catalysis
,”
Catal. Rev. - Sci. Eng.
,
12
(
1
), pp.
1
35
.
26.
Gileadi, E., Kirowa-Eisner, E., and Penciner, J., 1975, Interfacial Electrochemistry An Experimental Approach, Addison-Wesley Publishing Company, Reading, MA.
27.
Lee
,
S.
,
Mukerjee
,
S.
,
Ticianelli
,
E.
, and
McBreen
,
J.
,
1999
, “
Electrocatalysis of CO Tolerance in Hydrogen Oxidation Reaction in PEM Fuel Cells
,”
Electrochim. Acta
,
44
(
19
), pp.
3283
3293
.
28.
Zawodzinski, T., Karuppaiah, C., Uribe, F., and Gottesfeld, S., 1997, “Aspects of CO Tolerance in Polymer Electrolyte Fuel Cells: Some Experimental Findings.,” Electrode Materials and Processes for Energy Conversion and Storage IV, S. Srinivasan et al., eds., The Electrochemical Society, Pennington, NJ, 97-13, pp. 139–146.
You do not currently have access to this content.