Numerical modeling of gas hydrates can provide an integrated understanding of the various process mechanisms controlling methane (CH4) production from hydrates and carbon dioxide (CO2) sequestration as a gas hydrate in geologic reservoirs. This work describes a new unified kinetic model which, when coupled with a compositional thermal reservoir simulator, can simulate the dynamics of CH4 and CO2 hydrate formation and decomposition in a geological formation. The kinetic model contains two mass transfer equations: one equation converts gas and water into hydrate and the other equation decomposes hydrate into gas and water. The model structure and parameters were investigated in comparison with a previously published model. The proposed kinetic model was evaluated in two case studies. Case 1 considers a single well within a natural hydrate reservoir for studying the kinetics of CH4 and CO2 hydrate decomposition and formation. A close agreement was achieved between the present numerical simulations and results reported by Hong and Pooladi-Darvish (2003, “A Numerical Study on Gas Production From Formations Containing Gas Hydrates,” Petroleum Society’s Canadian International Petroleum Conference, Calgary, AB, Jun. 10–12, Paper No. 2003-060). Case 2 considers multiple wells within a natural hydrate reservoir for studying the unified kinetic model to demonstrate the feasibility of CO2 sequestration in a natural hydrate reservoir with potential enhancement of CH4 recovery. The model will be applied in future field-scale simulations to predict the dynamics of gas hydrate formation and decomposition processes in actual geological reservoirs.

1.
Sloan
,
E. D.
, 2003, “
Fundamental Principles and Applications of Natural Gas Hydrates
,”
Nature (London)
0028-0836,
426
, pp.
353
359
.
2.
Pooladi-Darvish
,
M.
, 2004, “
Gas Production From Hydrate Reservoirs and Its Modeling
,” Paper No. SPE 86827.
3.
Lee
,
H.
,
Seo
,
Y.
,
Seo
,
Y.-T.
,
Moudrakovski
,
I. L.
, and
Ripmeester
,
J. A.
, 2003, “
Recovering Methane From Solid Methane Hydrate With Carbon Dioxide
,”
Angew. Chem.
0044-8249,
115
, pp.
5202
5205
.
4.
Sloan
,
E. D.
, 1998,
Clathrate Hydrates of Natural Gases
, 2nd ed.,
Marcel Dekker
,
New York
, pp.
513
537
.
5.
Adisasmito
,
S.
,
Frank
,
R. J.
, and
Sloan
,
E. D.
, 1991, “
Hydrates of Carbon Dioxide and Methane Mixtures
,”
J. Chem. Eng. Data
0021-9568,
36
, pp.
68
71
.
6.
Seo
,
Y.
,
Lee
,
H.
, and
Uchida
,
T.
, 2002, “
Methane and Carbon Dioxide Hydrate Phase Behavior in Small Porous Silica Gels: Three-Phase Equilibrium Determination and Thermodynamic Modeling
,”
Langmuir
0743-7463,
18
, pp.
9164
9170
.
7.
Hirohama
,
S.
,
Shimoyama
,
Y.
,
Wakabayashi
,
A.
,
Tatsuta
,
S.
, and
Nishida
,
N.
, 1996, “
Conversion of CH4-Hydrate to CO2-Hydrate in Liquid CO2
,”
J. Chem. Eng. Jpn.
0021-9592,
29
, pp.
1014
1020
.
8.
Kim
,
H. C.
,
Bishnoi
,
P. R.
,
Heidemann
,
R. A.
, and
Rizvi
,
S. S. H.
, 1987, “
Kinetics of Methane Hydrate Decomposition
,”
Chem. Eng. Sci.
0009-2509,
42
, pp.
1645
1653
.
9.
Englezos
,
P.
,
Dholabhai
,
P. D.
,
Kalogerakis
,
N.
, and
Bishnoi
,
P. R.
, 1987, “
Kinetics of Formation of Methane and Ethane Gas Hydrates
,”
Chem. Eng. Sci.
0009-2509,
42
, pp.
2647
2658
.
10.
Englezos
,
P.
,
Dholabhai
,
P. D.
,
Kalogerakis
,
N.
, and
Bishnoi
,
P. R.
, 1987, “
Kinetics of Gas Hydrate Formation From Mixtures of Methane and Ethane
,”
Chem. Eng. Sci.
0009-2509,
42
, pp.
2659
2666
.
11.
Malegaonkar
,
M. B.
,
Dholabhai
,
P. D.
, and
Bishnoi
,
P. R.
, 1997, “
Kinetics of Carbon Dioxide and Methane Hydrate Formation
,”
Can. J. Chem. Eng.
0008-4034,
75
, pp.
1090
1099
.
12.
Swinkels
,
W. J. A. M.
, and
Drenth
,
R. J. J.
, 2000, “
Thermal Reservoir Simulation Model of Production From Naturally Occurring Gas Hydrate Accumulations
,”
SPE Reservoir Eval. Eng.
1094-6470,
3
, pp.
559
566
.
13.
Hong
,
H.
, and
Pooladi-Darvish
,
M.
, 2003, “
A Numerical Study on Gas Production from Formations Containing Gas Hydrates
,” Petroleum Society’s Canadian International Petroleum Conference,
Calgary, AB
, Jun. 10–12, Paper No. 2003-060.
14.
Moridis
,
G. J.
, 2003, “
Numerical Studies of Gas Production From Methane Hydrates
,”
SPEJ
1086-055X,
3
, pp.
359
370
.
15.
Moridis
,
G. J.
, 2004, “
Numerical Studies of Gas Production From Class 2 and Class 3 Hydrate Accumulations at the Mallik Site, Mackenzie Delta, Canada
,”
SPE Reservoir Eval. Eng.
1094-6470,
3
, pp.
175
183
.
16.
Moridis
,
G. J.
,
Collett
,
T. S.
,
Dallimore
,
S. R.
,
Satoh
,
T.
,
Hancock
,
S.
, and
Weatherill
,
B.
, 2004, “
Numerical Studies of Gas Production From Several CH4 Hydrate Zones at the Mallik Site, Mackenzie Delta, Canada
,”
J. Pet. Sci. Eng.
0920-4105,
24
, pp.
219
238
.
17.
Moridis
,
G. J.
,
Kowalsky
,
M.
, and
Pruss
,
K.
, 2007, “
Depressurization-Induced Gas Production From Class 1 Hydrate Deposits
,”
SPE Reservoir Eval. Eng.
1094-6470,
3
, pp.
458
481
.
18.
Moridis
,
G. J.
, and
Reagan
,
M. T.
, 2007, “
Gas Production From Oceanic Class 2 Hydrate Accumulations
,”
2007 Offshore Technology Conference
,
Houston, TX
, Apr. 30–May 3, Paper No. OTC-18866.
19.
Masuda
,
Y.
,
Naganawa
,
S.
,
Ando
,
S.
, and
Sato
,
K.
, 1997, “
Numerical Calculation of Gas Production Performance From Reservoirs Containing Natural Gas Hydrates
,”
SPE Asia Pacific Oil and Gas Conference
,
Kuala Lumpur, Malaysia
, Apr. 14–17, Paper No. SPE-38291.
20.
Sun
,
X.
, and
Mohanty
,
K. K.
, 2005, “
Simulation of Methane Hydrate Reservoirs
,”
2005, SP. E. Reservoir Simulation Conference
,
Houston, TX
, Jan. 31–Feb. 2, Paper No. SPE-93015.
21.
Sun
,
X.
, and
Mohanty
,
K. K.
, 2006, “
Kinetic Simulation of Methane Hydrate Formation and Dissociation in Porous Media
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
3476
3495
.
22.
CMG STARS®, “
Advanced Process and Thermal Reservoir Simulator
,” Computer Modelling Group Ltd., Calgary, Alberta, Canada.
23.
Uddin
,
M.
,
Coombe
,
D.
, and
Wright
,
F. .
, 2008, “
Modelling of CO2 Hydrate Formation in Geological Reservoirs by Injection of CO2 Gas
,”
ASME J. Energy Resour. Technol.
0195-0738,
130
, pp.
1
11
.
24.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Sherwood
,
T. K.
, 1977,
The Properties of Gases and Liquids
, 3rd ed.,
McGraw-Hill
,
New York
.
25.
Sloan
,
E. D.
, 1998, “
Physical/Chemical Properties of Gas Hydrate and Application to World Margin Stability and Climate Change
,”
Gas Hydrates: Relevance to World Margin Stability and Climate Change
,
J.-P.
Henriet
and
J.
Mienert
, eds.,
Geological Society
,
London
, Vol.
137
, pp.
31
50
.
26.
Anderson
,
G. K.
, 2004, “
Enthalpy of Dissociation and Hydrate Number of Methane Hydrate Carbon From the Clapeyron Equation
,”
J. Chem. Thermodyn.
0021-9614,
36
(
12
), pp.
1119
1127
.
27.
Anderson
,
G. K.
, 2003, “
Enthalpy of Dissociation and Hydrate Number of Carbon Dioxide Hydrate From the Clapeyron Equation
,”
J. Chem. Thermodyn.
0021-9614,
35
(
7
), pp.
1171
1183
.
28.
Kleinberg
,
R. L.
,
Flaum
,
C.
,
Grifin
,
D. D.
,
Brewer
,
P. G.
,
Malby
,
G. E.
, and
Peltzer
,
E. T.
, 2003, “
Deep Sea, NMR: Methane Hydrate Growth Habit in Porous Media and Its Relationship to Hydraulic Permeability, Deposit Accumulation, and Submarine Slope Stability
,”
J. Geophys. Res.
0148-0227,
108
(
B10
), pp.
EPM 12
-1–12-
17
.
29.
van Genuchten
,
M. T.
, 1980, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
0361-5995,
44
, pp.
892
898
.
30.
Parker
,
J. C.
,
Lenhard
,
R. J.
, and
Kuppusamy
,
T.
, 1987, “
A Parametric Model for Constitutive Properties Governing Multiphase Flow in Porous Media
,”
Water Resour. Res.
0043-1397,
23
, pp.
618
624
.
You do not currently have access to this content.