Heat transfer to supercritical water in heated tubes and channels is relevant for steam generators in conventional power plants and future concepts for supercritical nuclear and solar-thermal power plants. A new experimental facility, the high pressure evaporation rig, setup at the Institute for Energy Systems (Technische Universität München) aims to provide heat transfer data to fill the existing knowledge gaps at these conditions. The test rig consists of a closed-loop high pressure cycle, in which de-ionized water is fed to an instrumented test section heated by the application of direct electrical current. It is designed to withstand a maximum pressure of 380 bar at 580 °C in the test section. The maximum power rating of the system is 1 MW. The test section is a vertical tube (material: AISI A213/P91) with a 7000 mm heated length, a 15.7 mm internal diameter, and a wall thickness of 5.6 mm. It is equipped with 70 thermocouples distributed evenly along its length. It enables the determination of heat transfer coefficients in the supercritical region at various steady-state or transient conditions. In a first series of tests, experiments are conducted to investigate normal and deteriorated heat transfer (DHT) under vertical upward flow conditions. The newly generated data and literature data are used to evaluate different correlations available for modeling heat transfer coefficients at supercritical pressures.
Skip Nav Destination
Article navigation
June 2018
Research-Article
Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: An Industrial Scale Test Rig
Gerrit A. Schatte,
Gerrit A. Schatte
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
e-mail: gerrit.schatte@tum.de
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
e-mail: gerrit.schatte@tum.de
Search for other works by this author on:
Andreas Kohlhepp,
Andreas Kohlhepp
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Search for other works by this author on:
Tobias Gschnaidtner,
Tobias Gschnaidtner
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Search for other works by this author on:
Christoph Wieland,
Christoph Wieland
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Search for other works by this author on:
Hartmut Spliethoff
Hartmut Spliethoff
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany;
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany;
Bavarian Center for Applied Energy Research
(ZAE Bayern),
Walther-Meissner-Str. 6,
Garching 85748, Germany
e-mail: spliethoff@tum.de
(ZAE Bayern),
Walther-Meissner-Str. 6,
Garching 85748, Germany
e-mail: spliethoff@tum.de
Search for other works by this author on:
Gerrit A. Schatte
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
e-mail: gerrit.schatte@tum.de
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
e-mail: gerrit.schatte@tum.de
Andreas Kohlhepp
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Tobias Gschnaidtner
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Christoph Wieland
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany
Hartmut Spliethoff
Institute for Energy Systems,
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany;
Technische Universität München,
Boltzmannstr. 15,
Garching 85748, Germany;
Bavarian Center for Applied Energy Research
(ZAE Bayern),
Walther-Meissner-Str. 6,
Garching 85748, Germany
e-mail: spliethoff@tum.de
(ZAE Bayern),
Walther-Meissner-Str. 6,
Garching 85748, Germany
e-mail: spliethoff@tum.de
1Corresponding author.
Contributed by the Advanced Energy Systems Division of ASME for publication in the JOURNAL OF ENERGY RESOURCES TECHNOLOGY. Manuscript received August 8, 2017; final manuscript received March 12, 2018; published online March 29, 2018. Editor: Hameed Metghalchi.
J. Energy Resour. Technol. Jun 2018, 140(6): 062002 (7 pages)
Published Online: March 29, 2018
Article history
Received:
August 8, 2017
Revised:
March 12, 2018
Citation
Schatte, G. A., Kohlhepp, A., Gschnaidtner, T., Wieland, C., and Spliethoff, H. (March 29, 2018). "Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: An Industrial Scale Test Rig." ASME. J. Energy Resour. Technol. June 2018; 140(6): 062002. https://doi.org/10.1115/1.4039610
Download citation file:
Get Email Alerts
Cited By
Related Articles
Response Surface Optimization of an Ammonia–Water Combined Power/Cooling Cycle Based on Exergetic Analysis
J. Energy Resour. Technol (March,2017)
Optimization and Estimation of the Thermal Energy of an Absorber With Graphite Disks by Using Direct and Inverse Neural Network
J. Energy Resour. Technol (February,2018)
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
J. Energy Resour. Technol (January,2017)
Optimum Heat Source Temperature and Performance Comparison of LiCl–H 2 O and LiBr–H 2 O Type Solar Cooling System
J. Energy Resour. Technol (May,2018)
Related Proceedings Papers
Related Chapters
Application of Universal Functions
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Circular Flux Tubes and Disks
Thermal Spreading and Contact Resistance: Fundamentals and Applications