Fluidized beds are used in many industries where gas–solid reactions are present for their favorable characteristics of good solids mixing, high heat, and mass transfer rates, and large throughputs. In an attempt to increase throughput, reduce reactor footprints, and reduce costs, process intensification by unconventional reactor designs is being pursued. Specifically, this work focuses on the development of high-G reactors where the particles are experiencing a centripetal force typically on the order of ten times the force of gravity. This operating regime provides intensified gas–solids contact providing higher mass transfer, heat transfer, and gas throughput than a typical fluidized bed. This work focuses analysis of a cold flow vortexing circulating fluidized bed (CFB). Through mapping the pressure distributions in the riser, insights into the behavior of the system were made and compared to CPFD Barracuda computational fluid dynamic models. The simulation results outlined the working envelope of the system and provided a baseline to compare the experimental results. The experimental pressure data determined angular velocities of the gas in the range of 30–40 m/s, with corresponding particle velocities around 15 m/s.

References

1.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1969
,
Fluidization Engineering
,
Wiley
, New York.
2.
Breault
,
R. W.
,
Yarrington
,
C. S.
, and
Weber
,
J. M.
,
2016
, “
The Effect of Thermal Treatment of hematite Ore for Chemical Looping Combustion of Methane
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042202
.
3.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2016
, “
Numerical Simulation Comparison of Two Reacto Configurations for Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042213
.
4.
Zhang
,
W.
,
2009
, “
A Review of Techniques for the Process Intensification of Fluidized Bed Reactors
,”
Chin. J. Chem. Eng.
,
17
(
4
), pp.
688
702
.
5.
Nieh
,
S.
, and
Yang
,
G.
,
1987
, “
Particle Flow Pattern in the Freeboard of a Vortexing Fluidized Bed
,”
Powder Technol.
,
50
(
2
), pp.
121
131
.
6.
Yang
,
G.
, and
Nieh
,
S.
,
1989
, “
On the Suspension Layers in the Freeboard of Vortexing Fluidized Beds
,”
Powder Technol.
,
57
(
3
), pp.
171
179
.
7.
Lee
,
J. K.
,
Hu
,
C. G.
,
Shin
,
Y. S.
, and
Chan
,
H. S.
,
1990
, “
Combustion Characteristics of a Two-Stage Swirl-Flow Fluidization Bed Combustor
,”
Can. J. Chem. Eng.
,
68
(
5
), pp.
824
830
.
8.
Lin
,
C. H.
,
Teng
,
J. T.
, and
Chyang
,
C. S.
,
1997
, “
Evaluation of the Combustion Efficiency and Emission of Pollutants by Coal Particles in a Vortexing Fluidized Bed
,”
Combust. Flame
,
110
(
1–2
), pp.
163
172
.
9.
Arturo
,
G.-Q.
,
Reyniers
,
P. A.
,
Kulkarni
,
S. R.
,
Torregrossu
,
M. M.
,
Pereault
,
P.
,
Heynderickx
,
G. J.
, and
Van Gemm
,
K.
,
2017
, “
Design and Cold Flow Testing of a Gas-Solid Vortex Reactor Demonstration Unit for Biomass Fast Pyrolysis
,”
Chem. Eng. J.
,
329
(
1
), pp.
198
210
.
10.
Baxerres
,
J. L.
,
Haewsungcharern
,
A.
, and
Gibert
,
H.
,
1977
, “
Whirling Bed: A New Technique for Gas Fluidization of Large Particles
,”
Lebensm.-Wiss. Technol.
,
10
, pp.
191
197
.
11.
Chen
,
Y.-M.
,
1987
, “
Fundamentals of a Centrifugal Fluidization
,”
AIChE J.
,
33
(
5
), pp.
722
728
.
12.
Kao
,
J.
,
Pfeffer
,
R.
, and
Tardos
,
G. I.
,
1987
, “
On Partial Fluidization in Rotating Fluidized Beds
,”
AIChE J.
,
33
(
5
), pp.
858
861
.
13.
De Wilde
,
J.
,
2014
, “
Gas-Solid Fluidized Beds in Vortex Chambers
,”
Chem. Eng. Process.
,
85
, pp.
256
290
.
14.
Nieh
,
S.
,
Yang
,
G.
,
Zhu
,
A. Q.
, and
Zhao
,
C. S.
,
1992
, “
Measurements of Gas-Particle Flows and Elurtiation of an 18 Inch i.d. Cold Vortexing Fluidized-Bed Combustion Model
,”
Powder Technol.
,
69
(2), pp.
139
146
.
15.
Ryan
,
E. M.
,
Decroix
,
D.
,
Breault
,
R.
,
Xu
,
W.
,
Huckaby
,
E. D.
,
Saha
,
K.
,
Dartevelle
,
S.
, and
Sun
,
X.
,
2013
, “
Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System
,”
Powder Technol.
,
242
, pp.
117
134
.
16.
Chen
,
C.
,
Werther
,
J.
,
Heinrich
,
S.
,
Qi
,
H. Y.
, and
Hartge
,
E. U.
,
2013
, “
CFPD Simulation of Circulating Fluidized Bed Risers
,”
Powder Technol.
,
235
, pp.
238
247
.
17.
Zhang
,
L.
,
Wang
,
Z.
,
Wang
,
Q.
,
Qin
,
H.
, and
Xu
,
X.
,
2016
, “
Simulation of Oil Shale Semi-Coke Particle Cold Transportation in a Spouted Bed Using CFPD Method
,”
Powder Technol.
,
301
, pp.
360
368
.
18.
O'Rourke
,
P. J.
, and
Snider
,
D. M.
,
2012
, “
Inclusion of Collisional Return-to-Isotropy in the MP-PIC Method
,”
Chem. Eng. Sci.
,
80
, pp.
39
54
.
19.
Snider
,
D. M.
,
2007
, “
Three Fundamental Granular Flow Experiments and CFPD Predictions
,”
Powder Technol.
,
176
(
1
), pp.
36
46
.
20.
Snider
,
D. M.
,
2001
, “
An Incompressible Three-Dimensional Multiphase Particle in Cell Model for Dense Particle Flows
,”
J. Comput. Phys.
,
170
(
2
), pp.
523
549
.
21.
Snider
,
D. M.
,
O'Rourke
,
P. J.
, and
Andrews
,
M. J.
,
1998
, “
Sediment Flow in Inclined Vessels Calculated Using a Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
Int. J. Multiphase Flow
,
24
(
8
), pp.
1359
1382
.
22.
Andrews
,
M. J.
, and
O'Rourke
,
P. J.
,
1996
, “
The Multiphase Particle-in-Cell (PIC) Method for Dense Particle Flows
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
397
402
.
23.
Shaffer
,
F.
,
Gopalan
,
R.
,
Cocco
,
R.
,
Kerri
,
S. B.
,
Hays
,
R.
, and
Knowlton
,
T.
,
2011
, “
High Speed Imaging Observations of Flow Phenomena in CFB Risers
,”
NETL Multiphase Flow Science Workshop
, Pittsburgh, PA, Aug. 16–18.
You do not currently have access to this content.