This study examined the rheological properties, ignition, and combustion characteristics of biochar–algae–water (BAW) slurry fuels. A pine sawdust biochar with a median particle size (D50) of approximately 12 μm and algae Chlorella vulgaris in dry powder form with D50 of approximately 19 μm were used. The BAW slurries with a constant solid loading of 40 wt % and algae/biochar ratio varying from 0 to 0.2 by weight were prepared. The apparent viscosity was measured using a Haake VT550 cone-and-plate viscometer. The stability of the slurries was characterized using a “drop rod” method. Ignition and combustion characteristics of the slurries were studied using a suspended single-droplet technique. A single droplet of a slurry fuel with a diameter ranging from 0.5 mm to 1.5 mm was suspended on a silicon carbide fibre and burned in air at 1023 K in an electrically heated tube furnace. The ignition and combustion processes of the droplet were recorded using a CCD camera at 200 fps. The ignition delay time, burnout time, and burning rate were determined. The BAW slurries showed shear-thinning flow behavior. The slurries had higher viscosity and greater stability at higher algae proportion in the solid. The ignition and combustion process of BAW slurries followed the sequence of water evaporation, devolatilization, ignition, and combustion of the solid residue. The combustion of the residual solid was diffusion controlled under the experimental conditions and the burning rates of the BAW slurry droplets ranged from 0.15 to 0.25 mm2 s−1.

References

1.
Babu
,
B. V.
,
2008
, “Biomass Pyrolysis: A State-of-The-Art Review,”
Biofuels, Bioprod. Biorefin.
,
2
(
5
), pp.
393
414
.
2.
Guell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
3.
Zhang
,
D.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Wu
,
J.
,
2015
, “
Combined Heat and Power (CHP) Generation Using Gas Engines Fueled With Pyrolysis Gases
,”
Handbook of Clean Energy Systems
,
Wiley
,
Hoboken, NJ
, pp.
1
17
.
4.
Bridgwater
,
A. V.
,
2012
, “
Review of Fast Pyrolysis of Biomass and Product Upgrading
,”
Biomass Bioenergy
,”
38
, pp.
68
94
.
5.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
6.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
7.
Saxena
,
R. C.
,
Adhikari
,
D. K.
, and
Goyal
,
H. B.
,
2009
, “
Biomass-Based Energy Fuel Through Biochemical Routes: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
1
), pp.
167
178
.
8.
Chen
,
R.
,
Wilson
,
M.
,
Leong
,
Y.
,
Bryant
,
P.
,
Yang
,
H.
, and
Zhang
,
D.
,
2011
, “
Preparation and Rheology of Biochar, Lignite Char and Coal Slurry Fuels
,”
Fuel
,
90
(
4
), pp.
1689
1695
.
9.
Shivaram
,
P.
,
Leong
,
Y. K.
,
Yang
,
H.
, and
Zhang
,
D.
,
2013
, “
Flow and Yield Stress Behaviour of Ultrafine Mallee Biochar Slurry Fuels: The Effect of Particle Size Distribution and Additives
,”
Fuel
,
104
, pp.
326
332
.
10.
Ghanooni
,
N.
,
Leong
,
Y. K.
, and
Zhang
,
D. K.
,
2013
, “
Mixing Narrow Coarse and Fine Coal Fractions—The Maximum Volume Fraction of Suspensions
,”
Adv. Powder Technol.
,
24
(
4
), pp.
764
770
.
11.
Liu
,
P.
,
Zhu
,
M.
,
Zhang
,
Z.
,
Leong
,
Y. K.
,
Zhang
,
Y.
, and
Zhang
,
D.
,
2016
, “
An Experimental Study of Rheological Properties and Stability Characteristics of Biochar-Glycerol-Water Slurry Fuels
,”
Fuel Process. Technol.
,
153
, pp.
37
42
.
12.
Liu
,
P.
,
Zhu
,
M.
,
Zhang
,
Z.
,
Leong
,
Y. K.
,
Zhang
,
Y.
, and
Zhang
,
D.
,
2017
, “
Rheological Behaviour and Stability Characteristics of Biochar-Water Slurry Fuels: Effect of Biochar Particle Size and Size Distribution
,”
Fuel Process. Technol.
,
156
, pp.
27
32
.
13.
Patton
,
R.
,
Steele
,
P.
, and
Yu
,
F.
,
2009
, “
Coal Vs. Charcoal-Fueled Diesel Engines: A Review
,”
Energy Sources, Part A
,
32
(
4
), pp.
315
322
.
14.
McMillian
,
M. H.
, and
Webb
,
H. A.
,
1989
, “
Coal-Fueled Diesels: Systems Development
,”
ASME J. Eng. Gas Turbines Power
,
111
(
3
), pp.
485
490
.
15.
Caton
,
J. A.
, and
Hsu
,
B. D.
,
1994
, “
The General Electric Coal-Fueled Diesel Engine Program (1982–1993): A Technical Review
,”
ASME J. Eng. Gas Turbines Power
,
116
(
4
), pp.
749
757
.
16.
Cho
,
Y. I.
, and
Choi
,
U. S.
,
1990
, “
Experimental Study of Micronized Coal/Water Slurry Rheology at High Shear Rates
,”
ASME J. Energy Resour. Technol.
,
112
(
1
), pp.
36
40
.
17.
Leonard
,
G.
,
Hsu
,
B.
, and
Flynn
,
P.
,
1989
,
Coal-Fueled Diesel: Technology Development: Final Report
,
Corporate Research and Development Center, General Electric Co.
,
Schenectady, NY
.
18.
Zhu
,
M.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Liu
,
P.
, and
Zhang
,
D.
,
2017
, “
An Experimental Investigation Into the Ignition and Combustion Characteristics of Single Droplets of Biochar Water Slurry Fuels in Air
,”
Appl. Energy
,
185
(Pt. 2), pp.
2160
2167
.
19.
Zhu
,
M.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Setyawan
,
H.
,
Liu
,
P.
, and
Zhang
,
D.
,
2017
, “
An Experimental Study of the Ignition and Combustion Characteristics of Single Droplets of Biochar-Glycerol-Water Slurry Fuels
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2475
2482
.
20.
Brennan
,
L.
, and
Owende
,
P.
,
2010
, “
Biofuels From Microalgae−A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
557
577
.
21.
Le
,
E.
,
Park
,
C.
, and
Hiibel
,
S.
,
2011
, “
Investigation of the Effect of Growth From Low to High Biomass Concentration Inside a Photobioreactor on Hydrodynamic Properties of Scenedesmus Obliquus
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011801
.
22.
Chen
,
C. Y.
,
Yeh
,
K. L.
,
Aisyah
,
R.
,
Lee
,
D. J.
, and
Chang
,
J. S.
,
2011
, “
Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review
,”
Bioresour. Technology
,
102
(
1
), pp.
71
81
.
23.
Uduman
,
N.
,
Qi
,
Y.
,
Danquah
,
M. K.
,
Forde
,
G. M.
, and
Hoadley
,
A.
,
2010
, “
Dewatering of Microalgal Cultures: A Major Bottleneck to Algae-Based Fuels
,”
J. Renewable Sustainable Energy
,
2
(
1
), p.
012701
.
24.
Magee
,
E.
,
Zhou
,
W.
,
Yang
,
H.
, and
Zhang
,
D.
,
2013
, “The Effect of Biochar Application in Microalgal Culture on the Biomass Yield and Cellular Lipids of Chlorella vulgaris,” Challenging Tomorrow (
Chemeca
2013), Brisbane, Australia, Sept. 29–Oct. 2, pp. 1–5.https://pdfs.semanticscholar.org/6d1e/41b620ef3f37ba29a31c48ca4a84bd135293.pdf
25.
Ahmad
,
M.
,
Rajapaksha
,
A. U.
,
Lim
,
J. E.
,
Zhang
,
M.
,
Bolan
,
N.
,
Mohan
,
D.
,
Vithanage
,
M.
,
Lee
,
S. S.
, and
Ok
,
Y. S.
,
2014
, “
Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review
,”
Chemosphere
,
99
, pp.
19
33
.
26.
Liu
,
G. E.
, and
Law
,
C. K.
,
1986
, “
Combustion of Coal-Water Slurry Droplets
,”
Fuel.
,
65
(
2
), pp.
171
176
.
27.
Prakash
,
P.
,
Raghavan
,
V.
, and
Mehta
,
P. S.
,
2013
, “
Analysis of Multimode Burning Characteristics of Isolated Droplets of Biodiesel-Diesel Blends
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
024501
.
28.
Zhang
,
D.
,
1994
, “
Bifurcation Behaviour of a Heterogeneous-Homogeneous Reaction System With a Constant Power Source
,”
Combust. Flame
,
96
(
1–2
), pp.
171
178
.
29.
Zhang
,
D.
,
Hills
,
P. C.
,
Wall
,
T. F.
, and
Tate
,
A. G.
,
1992
, “
The Ignition of Coal Particles and Explosions in Surrounding Combustible Gases During Heating by Laser Irradiation
,”
Fuel
,
71
(
10
), pp.
1206
1207
.
30.
Zhang
,
D.
, and
Wall
,
T. F.
,
1994
, “
Ignition of Coal Particle: The Influence of Experimental Techniques
,”
Fuel
,
73
(
7
), pp.
1114
1119
.
31.
Piriou
,
B.
,
Vaitilingom
,
G.
,
Veyssiere
,
B.
,
Cuq
,
B.
, and
Rouau
,
X.
,
2013
, “
Potential Direct Use of Solid Biomass in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
169
88
.
32.
Atal
,
A.
, and
Levendis
,
Y. A.
,
1994
, “
Combustion of CWF Agglomerates From Pulverized or Mixronized Bituminous Coal, Carbon Black, and Diesel Soot
,”
Combust. Flame
,
98
(
4
), pp. 326–342, IN1, 343–349.
You do not currently have access to this content.