Dual-fuel strategies can enable replacement of diesel fuel with low reactivity biofuels like hydrous ethanol. Previous work has shown that dual-fuel strategies using port injection of hydrous ethanol can replace up to 60% of diesel fuel on an energy basis. However, they yield negligible benefits in NOX emissions, soot emissions, and brake thermal efficiency (BTE) over conventional single fuel diesel operation. Pretreatment of hydrous ethanol through steam reforming before mixing with intake air offers the potential to both increase BTE and decrease soot and NOX emissions. Steam reforming can upgrade the heating value of the secondary fuel through thermochemical recuperation (TCR) and produces inert gases to act as a diluent similar to exhaust gas recirculation. This study experimentally investigated a novel thermally integrated steam reforming TCR reactor that uses sensible and chemical energy in the exhaust to provide the necessary heat for hydrous ethanol steam reforming. An off-highway diesel engine was operated at three speed and load settings with varying hydrous ethanol flow rates reaching fumigant energy fractions of up to 70%. The engine achieved soot reductions of close to 90% and minor NOX reductions; however, carbon monoxide and unburned hydrocarbon emissions increased. A first law energy balance using the experimental data shows that the developed TCR system effectively upgraded the heating value of the secondary fuel. Overall, hydrous ethanol steam reforming using TCR can lead to 23% increase in fuel heating value at 100% conversion, a limit approached in the conducted experiments.

References

1.
Hwang
,
J. T.
,
Nord
,
A. J.
, and
Northrop
,
W. F.
,
2016
, “
Efficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines
,”
ASME 2016 Internal Combustion Engine Division Fall Technical Conference
,
Greeenville, SC
,
Oct. 9–12
, Paper No. ICEF2016-9349, p. V001T02A007.
2.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2017
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME 2015 Internal Combustion Engine Division Fall Technical Conference
,
Houston, TX
,
Nov. 8–11
, Paper No. ICEF2015-1067, p. V001T02A005.
3.
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2014
, “
Gas and Particle Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using High Water Content Hydrous Ethanol
,”
ASME Internal Combustion Engine Division Fall Technical Conference
,
Columbus, IN
,
Oct. 19–22
, p.
V001T02A003
.
4.
Sall
,
E. D.
,
Morgenstern
,
D. A.
,
Fornango
,
J. P.
,
Taylor
,
J. W.
,
Chomic
,
N.
, and
Wheeler
,
J.
,
2013
, “
Reforming of Ethanol With Exhaust Heat at Automotive Scale
,”
Energy Fuels
,
27
(
9
), pp.
5579
5588
.
5.
Wang
,
F.
,
Li
,
L.
, and
Liu
,
Y.
,
2017
, “
Effects of Flow and Operation Parameters on Methanol Steam Reforming in Tube Reactor Heated by Simulated Waste Heat
,”
Int. J. Hydrogen Energy
,
42
(
42
), pp.
26270
26276
.
6.
Chakravarthy
,
V. K.
,
Daw
,
C. S.
,
Pihl
,
J. A.
, and
Conklin
,
J. C.
,
2010
, “
Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines
,”
Energy Fuels
,
24
(
3
), pp.
1529
1537
.
7.
Li
,
G.
,
Zhang
,
Z.
,
You
,
F.
,
Pan
,
Z.
,
Zhang
,
X.
,
Dong
,
J.
, and
Gao
,
X.
,
2013
, “
A Novel Strategy for Hydrous-Ethanol Utilization: Demonstration of a Spark-Ignition Engine Fueled With Hydrogen-Rich Fuel From an Onboard Ethanol/Steam Reformer
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5936
5948
.
8.
Cesana
,
O.
,
Gutman
,
M.
,
Shapiro
,
M.
, and
Tartakovsky
,
L.
,
2016
, “
Internal Combustion Engine With Thermochemical Recuperation Fed by Ethanol Steam Reforming Products—Feasibility Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
147
(
1
).
9.
Choi
,
S.
,
Bae
,
J.
,
Lee
,
J.
, and
Cha
,
J.
,
2017
, “
Exhaust Gas Fuel Reforming for Hydrogen Production With CGO-Based Precious Metal Catalysts
,”
Chem. Eng. Sci.
,
163
, pp.
206
214
.
10.
Kuchling
,
T.
,
Endisch
,
M.
,
Schneider
,
J.
,
Kureti
,
S.
,
Hübner
,
W.
,
Preis
,
M.
, and
Schmidt
,
C.
,
2017
, “
Potential of On-Board Gasoline Upgrading for Enhancement of Engine Efficiency
,”
Chem. Eng. Technol.
,
40
(
9
), pp.
1644
1651
.
11.
Brookshear
,
D. W.
,
Pihl
,
J. A.
, and
Szybist
,
J. P.
,
2018
, “
Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines
,”
Energy Fuels
,
32
(
2
), pp.
2267
2281
.
12.
Ji
,
C.
,
Dai
,
X.
,
Ju
,
B.
,
Wang
,
S.
,
Zhang
,
B.
,
Liang
,
C.
, and
Liu
,
X.
,
2012
, “
Improving the Performance of a Spark-Ignited Gasoline Engine With the Addition of Syngas Produced by Onboard Ethanol Steaming Reforming
,”
Int. J. Hydrogen Energy
,
37
(
9
), pp.
7860
7868
.
13.
Casanovas
,
A.
,
Divins
,
N. J.
,
Rejas
,
A.
,
Bosch
,
R.
, and
Llorca
,
J.
,
2017
, “
Finding a Suitable Catalyst for On-Board Ethanol Reforming Using Exhaust Heat From an Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
13681
13690
.
14.
Kumar
,
A.
,
Prasad
,
R.
, and
Sharma
,
Y. C.
,
2007
, “
Steam Reforming of Ethanol: Production of Renewable Hydrogen
,”
Chem. Pap.
,
11
(
1
), pp.
1228
1239
.
15.
Chuahy
,
F. D. F.
, and
Kokjohn
,
S. L.
,
2017
, “
High Efficiency Dual-Fuel Combustion Through Thermochemical Recovery and Diesel Reforming
,”
Appl. Energy
,
195
, pp.
503
522
.
16.
Heywood
,
J. B.
,
n.d.
,
Internal Combustion Engine Fundamentals
, Vol.
21
,
McGraw-Hill Inc.
,
New York
.
17.
Laosiripojana
,
N.
, and
Assabumrungrat
,
S.
,
2007
, “
Catalytic Steam Reforming of Methane, Methanol, and Ethanol Over Ni/YSZ: The Possible Use of These Fuels in Internal Reforming SOFC
,”
J. Power Sources
,
163
(
2
), pp.
943
951
.
18.
Figliola
,
R.
, and
Beasley
,
D.
,
2000
,
Theory and Design for Mechanical Measurements
, 3rd ed,
John Wiley and Sons
,
New York
.
19.
Zhou
,
J. H.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2014
, “
Combustion, Performance, Regulated and Unregulated Emissions of a Diesel Engine With Hydrogen Addition
,”
Appl. Energy
,
126
(
August
), pp.
1
12
.
20.
Zhou
,
J. H.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2014
, “
Combustion, Performance and Emissions of a Diesel Engine With H2, CH4, and H2–CH4 Addition
,”
Int. J. Hydrogen Energy
,
39
(
9
), pp.
4611
4621
.
21.
Prikhodko
,
V. Y.
,
Curran
,
S. J.
,
Barone
,
T. L.
,
Lewis
,
S. A.
,
Storey
,
J. M.
,
Cho
,
K.
,
Wagner
,
R. M.
, and
Parks
,
J. E.
,
2011
, “
Diesel Oxidation Catalyst Control of Hydrocarbon Aerosols From Reactivity Controlled Compression Ignition Combustion
,”
ASME 2011 International Mechanical Engineering Congress and Exposition
,
Denver, CO
,
Nov. 11–17
, pp.
273
278
.
22.
DieselNet
,
2017
, “
Nonroad Diesel Engine EPA Emissions Standards
,” https://www.dieselnet.com/standards/us/nonroad.php
23.
Rahman
,
M. M.
,
Stevanovic
,
S.
,
Brown
,
R. J.
, and
Ristovski
,
Z.
,
2013
, “
Influence of Different Alternative Fuels on Particle Emission From a Turbocharged Common-Rail Diesel Engine
,”
Procedia Eng.
,
56
(
January
), pp.
381
386
.
24.
Katare
,
S. R.
,
Patterson
,
J. E.
, and
Laing
,
P. M.
,
2007
, “
Aged DOC Is a Net Consumer of NO2: Analyses of Vehicle, Engine-Dynamometer and Reactor Data
,” SAE Technical Paper Series No. 2007-01-3984.
25.
Majewski
,
W. A.
,
2018
, “
Diesel Oxidation Catalyst
,” DieselNet, https://www.dieselnet.com/tech/cat_doc.php
26.
Aupretre
,
F.
,
Descorme
,
C.
,
Duprez
,
D.
,
Casanave
,
D.
, and
Uzio
,
D.
,
2005
, “
Ethanol Steam Reforming Over MgxNi1-XAl2O3 Spinel Oxide-Supported Rh Catalysts
,”
J. Catal.
,
233
(
2
), pp.
464
477
.
27.
Fatsikostas
,
A. N.
, and
Verykios
,
X. E.
,
2004
, “
Reaction Network of Steam Reforming of Ethanol Over Ni-Based Catalysts
,”
J. Catal.
,
225
(
2
), pp.
439
452
.
28.
Comas
,
J.
,
Marino
,
F.
,
Laborde
,
M.
, and
Amadeo
,
N.
,
2004
, “
Bio-Ethanol Steam Reforming on Ni/Al2O3 Catalyst
,”
Chem. Eng. J.
,
98
(
1–2
), pp.
61
68
.
29.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
You do not currently have access to this content.