Abstract

The main characteristic of the complicated carbonate reservoirs is notably strong heterogeneous, leading to a high uncertainty in formation parameter evaluation. The most reliable method for obtaining the dynamic parameters is well test interpretation. However, the well test curve shows similar characteristics for multi-layers reservoirs, dual-medium reservoirs, and carbonate reservoirs with lithology mixed sedimentation lithology. Sometimes the well test fitting result under the mentioned three kinds of models is satisfied, but the interpretation result is quite different. In order to reduce the parameter evaluation multiplicity, the synthetic identification and evaluation method for obtaining the physical parameters of the complicated carbonate reservoir was proposed, based on completion types, core analysis, lithology analysis, and well test results. The evaluation method distinguishes the different carbonate reservoir characteristics from similar well test responses by summarizing and classifying the completion method, reservoir fracture characteristics, and production logging test (PLT) results. The reliability of the proposed method is verified by an application of actual carbonate reservoir parameters evaluation. The proposed method can distinguish among multi-layers reservoirs, dual-medium, and complicated reservoirs with mixed sedimentation lithology whose main characteristic is that concavity existing in the pressure derivative curve. If the well test match results were satisfied enough which lead to the proposed method and process was ignored, the interpretation results and production performance prediction may deviate largely from the actual situation.

References

1.
Huang
,
Z. Q.
,
Yao
,
J.
, and
Wang
,
Y. Y.
,
2013
, “
An Efficient Numerical Model for Immiscible Two-Phase Flow in Fractured Karst Reservoirs
,”
Commun. Comput. Phys.
,
13
(
2
), pp.
540
558
. 10.4208/cicp.160711.240212a
2.
Huang
,
Z.
,
Yao
,
J.
,
Li
,
Y.
,
Wang
,
C.
, and
Lv
,
X.
,
2011
, “
Numerical Calculation of Equivalent Permeability Tensor for Fractured Vuggy Porous Media Based on Homogenization Theory
,”
Commun. Comput. Phys.
,
9
(
1
), pp.
180
204
. 10.4208/cicp.150709.130410a
3.
Popov
,
P.
,
Efendiev
,
Y.
, and
Qin
,
G.
,
2009
, “
Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs
,”
Commun. Comput. Phys.
,
6
(
1
), pp.
162
184
. 10.4208/cicp.2009.v6.p162
4.
Pandey
,
S. N.
, and
Chaudhuri
,
A.
,
2017
, “
The Effect of Heterogeneity on Heat Extraction and Transmissivity Evolution in a Carbonate Reservoir: A Thermo-Hydro-Chemical Study
,”
Geothermics
,
69
, pp.
45
54
. 10.1016/j.geothermics.2017.04.004
5.
Adam
,
A. M.
,
Swennen
,
R.
,
Abdulghani
,
W.
,
Abdlmutalib
,
A.
,
Hariri
,
M.
, and
Abdulraheem
,
A.
,
2017
, “
Reservoir Heterogeneity and Quality of Khuff Carbonates in Outcrops of Central Saudi Arabia
,”
Mar. Pet. Geol.
,
89
(
3
), pp.
721
751
. 10.1016/j.marpetgeo.2017.11.010
6.
Correia
,
M. G.
,
Maschio
,
C.
, and
Schiozer
,
D. J.
,
2015
, “
Integration of Multiscale Carbonate Reservoir Heterogeneities in Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
131
, pp.
34
50
. 10.1016/j.petrol.2015.04.018
7.
Guerriero
,
V.
,
Iannace
,
A.
,
Mazzoli
,
S.
,
Parente
,
M.
,
Vitale
,
S.
, and
Giorgioni
,
M.
,
2010
, “
Quantifying Uncertainties in Multi-Scale Studies of Fractured Reservoir Analogues: Implemented Statistical Analysis of Scan Line Data From Carbonate Rocks
,”
J. Struct. Geol.
,
32
(
9
), pp.
1271
1278
. 10.1016/j.jsg.2009.04.016
8.
Sun
,
H.
,
Vega
,
S.
, and
Tao
,
G.
,
2017
, “
Analysis of Heterogeneity and Permeability Anisotropy in Carbonate Rock Samples Using Digital Rock Physics
,”
J. Pet. Sci. Eng.
,
156
, pp.
419
429
. 10.1016/j.petrol.2017.06.002
9.
Matonti
,
C.
,
Guglielmi
,
Y.
,
Viseur
,
S.
,
Bruna
,
P. O.
,
Borgomano
,
J.
,
Dahl
,
C.
, and
Marié
,
L.
,
2015
, “
Heterogeneities and Diagenetic Control on the Spatial Distribution of Carbonate Rocks Acoustic Properties at the Outcrop Scale
,”
Tectonophysics
,
638
, pp.
94
111
. 10.1016/j.tecto.2014.10.020
10.
Corbett
,
P. W. M.
,
Wang
,
H.
,
Câmara
,
R. N.
,
Tavares
,
A. C.
,
de Almeida
,
L. F. B.
,
Perosi
,
F.
,
Machado
,
A.
,
Jiang
,
Z.
,
Ma
,
J.
, and
Bagueira
,
R.
,
2017
, “
Using the Porosity Exponent (m) and Pore-Scale Resistivity Modelling to Understand Pore Fabric Types in Coquinas (Barremian-Aptian) of the Morro Do Chaves Formation, NE Brazil
,”
Mar. Pet. Geol.
,
88
, pp.
628
647
. 10.1016/j.marpetgeo.2017.08.032
11.
Li
,
H.
, and
Zhang
,
J.
,
2018
, “
Well Log and Seismic Data Analysis for Complex Pore Structure Carbonate Reservoir Using 3d Rock Physics Templates
,”
J. Appl. Geophys.
,
151
, pp.
175
183
. 10.1016/j.jappgeo.2018.02.017
12.
Bahrami
,
H.
,
Siavoshi
,
J.
,
Parvizi
,
H.
, and
Karimi
,
M. H.
,
2008
, “
Characterization of Fracture Dynamic Parameters to Simulate Naturally Fractured Reservoirs
,”
International Petroleum Technology Conference
,
Kuala Lumpur, Malaysia
,
Dec. 3–5
.
13.
Qiang
,
L.
,
Bing
,
X.
,
Yuyu
,
W.
,
Ke,
,
H.
,
Xinggang
,
L.
,
Yan
,
J.
,
Wenjun
,
L.
, and
Tao
,
L.
,
2017
, “
Petrophysical Characteristics and Logging Evaluation of Asphaltene Carbonate Reservoirs: A Case Study of the Cambrian Longwangmiao Formation in Anyue Gas Field, Sichuan Basin, SW China
,”
Pet. Explor. Dev.
,
44
(
6
), pp.
941
947
. 10.1016/S1876-3804(17)30106-4
14.
Zambrano
,
M.
,
Tondi
,
E.
,
Mancini
,
L.
,
Lanzafame
,
G.
,
Xavier Trias
,
F.
,
Arzilli
,
F.
,
Materazzi
,
M.
, and
Torrieri
,
S.
,
2018
, “
Fluid Flow Simulation and Permeability Computation in Deformed Porous Carbonate Grainstones
,”
Adv. Water Resour.
,
115
, pp.
95
111
. 10.1016/j.advwatres.2018.02.016
15.
Jiang
,
Y.
, and
Dahi Taleghani
,
A.
,
2018
, “
Modified EXtended Finite Element Methods for Gas Flow in Fractured Reservoirs: A Pseudo-Pressure Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
073101
. 10.1115/1.4039327
16.
Gomaa
,
A. M.
,
Nino-Penaloza
,
A.
,
Cutler
,
J.
, and
Chaudhary
S.
,
2018
, “
Insights of Wormhole Propagation During Carbonate Acidizing: A Comparison Between Constant Injection Pressure Versus Constant Volumetric Rate
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102906
. 10.1115/1.4039443
17.
Sarhan
,
M. A.
,
Basal
,
A. M. K.
, and
Ibrahim
,
I. M.
,
2017
, “
Integration of Seismic Interpretation and Well Logging Analysis of Abu Roash D Member, Gindi Basin, Egypt: Implication for Detecting and Evaluating Fractured Carbonate Reservoirs
,”
J. Afr. Earth Sci.
,
135
, pp.
1
13
. 10.1016/j.jafrearsci.2017.08.010
18.
Khoshbakht
,
F.
,
Azizzadeh
,
M.
,
Memarian
,
H.
,
Nourozi
,
G. H.
, and
Moallemi
,
S. A.
,
2012
, “
Comparison of Electrical Image Log With Core in a Fractured Carbonate Reservoir
,”
J. Pet. Sci. Eng.
,
86–87
, pp.
289
296
. 10.1016/j.petrol.2012.03.007
19.
Gao
,
B.
,
Huang
,
Z. Q.
,
Yao
,
J.
,
Lv
,
X.-R.
, and
Wu
,
Y.-S.
,
2016
, “
Pressure Transient Analysis of a Well Penetrating a Filled Cavity in Naturally Fractured Carbonate Reservoirs
,”
J. Pet. Sci. Eng.
,
145
, pp.
392
403
. 10.1016/j.petrol.2016.05.037
20.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
. 10.1115/1.4037903
21.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
. 10.1115/1.4039875
22.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Wang
,
Y.
,
Feng
,
D.
,
Yang
,
Z.
,
Li
,
D.
and
Yu
,
H.
,
2018
, “
Decline Curve Analysis of Fractured Horizontal Wells Through Segmented Fracture Model
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012903
. 10.1115/1.4040533
23.
Kuchuk
,
F. J.
, and
Biryukov
,
D.
,
2015
, “
Pressure Transient Tests and Flow Regimes in Fractured Reservoirs
,”
SPE Reservoir Eval. Eng.
,
18
(
2
), pp.
187
204
. 10.2118/166296-PA
24.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology To Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
. 10.2118/185166-PA
25.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Chai
,
Z.
,
Wang
,
Y.
,
Yu
,
H.
, and
Killough
,
J.
,
2019
, “
Interference Testing Model of Multiply Fractured Horizontal Well With Multiple Injection Wells
,”
J. Pet. Sci. Eng.
,
176
, pp.
1106
1120
. 10.1016/j.petrol.2019.02.025
26.
Azari
,
M.
,
Hamza
,
F.
,
Hadibeik
,
H.
, and
Ramakrishna
,
S.
,
2018
, “
Well-Testing Challenges in Unconventional and Tight Gas Reservoirs
,”
SPE Western Regional Meeting
,
Garden Grove, CA
,
Apr. 22–26
.
27.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
Soc. Pet. Eng. J.
,
3
(
3
), pp.
245
255
. 10.2118/426-PA
28.
De Swaan
,
O. A
,
1976
, “
Analytic Solutions for Determining Naturally Fractured Reservoir Properties by Well Testing
,”
Soc. Pet. Eng. J.
,
16
(
3
), pp.
117
122
. 10.2118/5346-PA
29.
Su
,
S.
,
Gosselin
,
O.
,
Parvizi
,
H.
, and
Giddins
,
M. A.
,
2013
, “
Dynamic Matrix-Fracture Transfer Behavior in Dual-Porosity Models
,”
EAGE Annual Conference & Exhibition Incorporating SPE Europec
,
London
,
June 10–13
.
30.
Wan
,
Y.-Z.
,
Liu
,
Y.-W.
,
Chen
,
F.-F.
,
Wu
,
N.-Y.
, and
Hu
,
G.-W.
,
2018
, “
Numerical Well Test Model for Caved Carbonate Reservoirs and its Application in Tarim Basin, China
,”
J. Pet. Sci. Eng.
,
161
, pp.
611
624
. 10.1016/j.petrol.2017.12.013
31.
Chu
,
W.
, and
Shank
,
G. D.
,
1993
, “
A New Model for a Fractured Well in a Radial, Composite Reservoir
,”
SPE Form. Eval.
,
8
(
3
), pp.
225
232
. 10.2118/20579-PA
32.
Jiang
,
J.
,
Rui
,
Z.
,
Hazlett
,
R.
, and
Lu
,
J.
,
2019
, “
An Integrated Technical-Economic Model for Evaluating CO2 Enhanced Oil Recovery Development
,”
Appl. Energy
,
247
, pp.
190
211
. 10.1016/j.apenergy.2019.04.025
33.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Chun
,
J.-H.
,
Li
,
Y.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Comprehensive Investigation on Performance of Oil and Gas Development in Nigeria: Technical and Non-Technical Analyses
,”
Energy
,
158
, pp.
666
680
. 10.1016/j.energy.2018.06.027
You do not currently have access to this content.