Abstract

Thermal management is an important factor in securing the safe and effective operation of a fuel cell vehicle (FCV). A parameterized stack model of a 100 kW proton exchange membrane fuel cell (PEMFC) is constructed by matlab/Simulink to design and asses the thermal management characteristics of a 100 kW full-powered FCV. The cooling components model, with parameters obtained by theoretical calculation based on the cooling requirement, is developed in the commercial solver GT-COOL. A thermal management simulation platform is constructed by coupling the stack model and cooling components. The accuracy of the modeling method for the stack is validated by comparing with the experimental data. The relationship between the operating temperature and output performance of the fuel cell stack is revealed based on the simulation model. The simulation results show that the operating temperature has a considerable influence on stack performance under high-current operation, and the inlet and outlet temperatures of the stack change nearly linearly with the increasing environmental temperature. The heat dissipation potential of the thermal management system under the high-load condition is also verified. The temperatures and coolant flow of core components, including the stack, DC/DC, air compressor, and driving motor, can meet the cooling requirements.

References

1.
Larminie
,
J.
,
2003
,
Fuel Cell Systems Explained
,
John Wiley and Sons
,
UK
.
2.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), pp.
790
796
.
3.
Wang
,
Y.
,
Li
,
S.
,
Zhang
,
Y.
,
Yang
,
X.
,
Deng
,
Y.
, and
Su
,
C.
,
2016
, “
The Influence of Inner Topology of Exhaust Heat Exchanger and Thermoelectric Module Distribution on the Performance of Automotive Thermoelectric Generator
,”
Energy Convers. Manage.
,
126
(
6
), pp.
266
277
. 10.1016/j.enconman.2016.08.009
4.
Liu
,
X.
,
Deng
,
Y. D.
,
Zhang
,
K.
,
Xu
,
M.
,
Xu
,
Y.
, and
Su
,
C. Q.
,
2014
, “
Experiments and Simulations on Heat Exchangers in Thermoelectric Generator for Automotive Application
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
364
370
. 10.1016/j.applthermaleng.2014.07.022
5.
Wang
,
Y.
,
Li
,
S.
,
Xie
,
X.
,
Deng
,
Y.
,
Liu
,
X.
, and
Su
,
C.
,
2018
, “
Performance Evaluation of an Automotive Thermoelectric Generator With Inserted Fins or Dimpled Surface Hot Heat Exchanger
,”
Appl. Energy
,
218
, pp.
391
401
. 10.1016/j.apenergy.2018.02.176
6.
Lee
,
M. Y.
, and
Lee
,
D. Y.
,
2015
, “
Review on Conventional Air Conditioning, Alternative Refrigerants, and CO2 Heat Pumps for Vehicles
,”
Adv. Mech. Eng.
,
5
, pp.
1
15
. 10.1155/2013/713924
7.
Ma
,
J.
, and
Hemmers
,
O.
,
2011
, “
Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
011801
. 10.1115/1.4003729
8.
Jeong
,
K. S.
, and
Oh
,
B. S.
,
2002
, “
Fuel Economy and Life-Cycle Cost Analysis of a Fuel Cell Hybrid Vehicle
,”
J. Power Sources
,
105
(
1
), pp.
58
65
. 10.1016/S0378-7753(01)00965-X
9.
Boretti
,
A. A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022203
. 10.1115/1.4005699
10.
Rajashekara
,
K.
,
2005
, “
Power Conversion System Strategies for Fuel Cell Vehicles
,”
Adv Technol Electral Eng Energ
,
24
(
1
), pp.
8
13
. 10.1016/S0360-3199(97)00102-X
11.
Liu
,
X.
,
Deng
,
Y. D.
,
Li
,
Z.
, and
Su
,
C. Q.
,
2015
, “
Performance Analysis of a Waste Heat Recovery Thermoelectric Generation System for Automotive Application
,”
Energy Convers. Manage.
,
90
, pp.
121
127
. 10.1016/j.enconman.2014.11.015
12.
Aso
,
S.
,
Kizaki
,
M.
, and
Nonobe
,
Y.
,
2007
, “
Development of Fuel Cell Hybrid Vehicles in Toyota
,”
Power Conversion Conference-Nagoya
,
Nagoya
,
Apr. 2–5
, pp.
1606
1611
.
13.
Sando
,
Y.
,
2009
, “
Research and Development of Fuel Cell Vehicles at Honda
,”
ECS Trans.
,
25
, pp.
211
224
. 10.1149/1.3210573
14.
Fly
,
A.
, and
Thring
,
R. H.
,
2016
, “
A Comparison of Evaporative and Liquid Cooling Methods for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
41
(
32
), pp.
14217
14229
. 10.1016/j.ijhydene.2016.06.089
15.
Fragiacomo
,
P.
,
De Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
. 10.1115/1.4039872
16.
Yang
,
X. G.
,
Ye
,
Q.
, and
Cheng
,
P.
,
2011
, “
Matching of Water and Temperature Fields in Proton Exchange Membrane Fuel Cells With Non-Uniform Distributions
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12524
12537
. 10.1016/j.ijhydene.2011.07.014
17.
Kurnia
,
J. C.
,
Sasmito
,
A. P.
, and
Shamim
,
T.
,
2017
, “
Performance Evaluation of a PEM Fuel Cell Stack With Variable Inlet Flows Under Simulated Driving Cycle Conditions
,”
Appl. Energy
,
206
, pp.
751
764
. 10.1016/j.apenergy.2017.08.224
18.
Wang
,
Y.
, and
Liu
,
Z.
,
2018
, “
Numerical Study on Fuel Preheating at Cold Start Phase in an Ethanol Flex Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082207
. 10.1115/1.4039740
19.
Dumercy
,
L.
,
Glises
,
R.
,
Louahlia-Gualous
,
H.
, and
Kauffmann
,
J. M.
,
2006
, “
Thermal Management of a PEMFC Stack by 3D Nodal Modeling
,”
J. Power Sources
,
156
(
1
), pp.
78
84
. 10.1016/j.jpowsour.2005.08.038
20.
Faghri
,
A.
, and
Guo
,
Z.
,
2005
, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
3891
3920
. 10.1016/j.ijheatmasstransfer.2005.04.014
21.
Asghari
,
S.
,
Akhgar
,
H.
, and
Imani
,
B. F.
,
2011
, “
Design of Thermal Management Subsystem for a 5 kW Polymer Electrolyte Membrane Fuel Cell System
,”
J. Power Sources
,
196
(
6
), pp.
3141
3148
. 10.1016/j.jpowsour.2010.11.077
22.
Hwang
,
J.-J.
,
2013
, “
Thermal Control and Performance Assessment of a Proton Exchanger Membrane Fuel Cell Generator
,”
Appl. Energy
,
108
, pp.
184
193
. 10.1016/j.apenergy.2013.03.025
23.
Amirfazli
,
A.
,
Asghari
,
S.
, and
Koosha
,
M.
,
2014
, “
Mathematical Modeling and Simulation of Thermal Management in Polymer Electrolyte Membrane Fuel Cell Stacks
,”
J. Power Sources
,
268
, pp.
533
545
. 10.1016/j.jpowsour.2014.06.073
24.
Sunden
,
B.
, and
Wu
,
Z.
,
2017
, “
On Heat Transfer Issues for Wind Energy Systems
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051201
. 10.1115/1.4035553
25.
Adler
,
J.
, and
Bandhauer
,
T.
,
2017
, “
Performance of a Diesel Engine at High Coolant Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062203
. 10.1115/1.4036771
26.
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2012
, “
A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2412
2429
. 10.1016/j.ijhydene.2011.11.010
27.
Chen
,
F. C.
,
Gao
,
Z.
,
Loutfy
,
R. O.
, and
Hecht
,
M.
,
2003
, “
Analysis of Optimal Heat Transfer in a PEM Fuel Cell Cooling Plate
,”
Fuel Cells
,
3
(
4
), pp.
181
188
. 10.1002/fuce.200330112
28.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2006
, “
A Chaotic Heat-Exchanger for PEMFC Cooling Applications
,”
J. Power Sources
,
156
(
1
), pp.
114
118
. 10.1016/j.jpowsour.2005.08.030
29.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2007
, “
Thermal and Hydrodynamic Performances of Chaotic Mini-Channel: Application to the Fuel Cell Cooling
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
795
803
. 10.1080/01457630701328908
30.
Castelain
,
C.
,
Lasbet
,
Y.
,
Auvity
,
B.
, and
Peerhossaini
,
H.
,
2016
, “
Experimental Study of the Thermal Performance of Chaotic Geometries for Their Use in PEM Fuel Cells
,”
Int. J. Therm. Sci.
,
101
, pp.
181
192
. 10.1016/j.ijthermalsci.2015.10.033
31.
Kang
,
S.
,
Min
,
K.
,
Mueller
,
F.
, and
Brouwer
,
J.
,
2009
, “
Configuration Effects of Air, Fuel, and Coolant Inlets on the Performance of a Proton Exchange Membrane Fuel Cell for Automotive Applications
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6749
6764
. 10.1016/j.ijhydene.2009.06.049
32.
Cheng
,
S.
,
Fang
,
C.
,
Xu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2015
, “
Model-Based Temperature Regulation of a PEM Fuel Cell System on a City Bus
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13566
13575
. 10.1016/j.ijhydene.2015.08.042
33.
Yu
,
S.
, and
Jung
,
D.
,
2008
, “
Thermal Management Strategy for a Proton Exchange Membrane Fuel Cell System With a Large Active Cell Area
,”
Renew. Energy
,
33
(
12
), pp.
2540
2548
. 10.1016/j.renene.2008.02.015
34.
Saygili
,
Y.
,
Eroglu
,
I.
, and
Kincal
,
S.
,
2015
, “
Model Based Temperature Controller Development for Water Cooled PEM Fuel Cell Systems
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
615
622
. 10.1016/j.ijhydene.2014.10.047
35.
Fronk
,
M. H.
,
Wetter
,
D. L.
,
Masten
,
D. A.
, and
Bosco
,
A.
,
2000
, “
PEM Fuel Cell System Solutions for Transportation
,”
SAE 2000 World Congress
,
Detroit
,
MI, Mar. 6–9
, pp.
212
219
.
36.
Vasu
,
G.
, and
Tangirala
,
A. K.
,
2008
, “
Control-Orientated Thermal Model for Proton-Exchange Membrane Fuel Cell Systems
,”
J. Power. Sources
,
183
(
1
), pp.
98
108
. 10.1016/j.jpowsour.2008.03.087
37.
Khan
,
M. J.
, and
Iqbal
,
M. T.
,
2005
, “
Modelling and Analysis of Electrochemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System
,”
Fuel Cells
,
5
(
4
), pp.
463
475
. 10.1002/fuce.200400072
38.
Swedenborg
,
S.
,
2017
,
Modeling and Simulation of Cooling System for Fuel Cell Vehicle
,
Uppsala University
,
Sweden
.
39.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A. I.
,
Jensen
,
H. M.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
2000
, “
Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
86
(
1
), pp.
173
180
. 10.1016/S0378-7753(99)00484-X
40.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harries
,
T. J.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
142
(
1
), pp.
9
15
. 10.1149/1.2043959
41.
Ulleberg
,
Ø.
,
2003
, “
Modeling of Advanced Alkaline Electrolyzers: A System Simulation Approach
,”
Int. J. Hydrogen Energy
,
28
(
1
), pp.
21
33
. 10.1016/S0360-3199(02)00033-2
42.
Rahman
,
M. M.
,
Hua
,
T. J.
, and
Rahman
,
H. Y.
,
2014
, “
Design of the Controller Cooling System of an Electric Vehicle
,”
Appl. Mech. Mater
,
663
, pp.
213
21735
. www.scientific.net/AMM.663.213
43.
Ding
,
Z.
,
Shen
,
W.
,
Xue
,
H.
,
Qu
,
M.
,
Hao
,
T.
, and
Huang
,
T.
,
2018
, “
Designing on a High Power Electric Vehicle Controller Semiconductor Cooling and Water Cooling System
,”
J. Comput. Methods Sci. Eng.
, pp.
1
10
.
44.
Bin-Abdun
,
N. A.
,
Razlan
,
Z. M.
,
Shahriman
,
A. B.
,
Hazry
,
D.
,
Khairunizam
,
W.
,
Yaacob
,
S.
,
Ahmed
,
S. F.
,
Hussain
,
A. T.
, and
Kamaruddin
,
H.
,
2015
, “
The Performance of a Heat Exchanger Designed for Cooling Electric Vehicle Car Battery System by Use Base Fluid and Nano-Fluid
,”
Appl. Mech. Mater.
,
793
, pp.
573
577
. www.scientific.net/AMM.793.573
You do not currently have access to this content.