Abstract

This study presents findings on combined effects of Reynolds number and rotational effect for a two-pass channel with a 180-deg turn, numerically and experimentally. To have a better understanding of the flow behavior and to create a baseline for future studies, a smooth wall channel with the square cross section is used in this study. The Reynolds number varies between 6000 and 35,000. Furthermore, by changing the rotational speed, the maximum rotation number of 1.5 is achieved. For the numerical investigation, large eddy simulation (LES) is utilized. Results from the numerical study show a good agreement with the experimental data. From the results, it can be concluded that increasing both Reynolds number and rotational speed is in favor of the heat transfer coefficient enhancement, especially in the turn region.

References

1.
Fan
,
C. S.
, and
Metzger
,
D. E.
,
1987
, “
Effects of Channel Aspect Ratio on Heat Transfer in Rectangular Passage Sharp 180 Deg Turn
,”
ASME International Gas Turbine Conference and Exhibition
,
Anaheim, CA
,
May 31–June 4
,
Paper No. 87-GT-113
.
2.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1999
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
. 10.1115/1.2927736
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
. 10.1115/1.2927879
4.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
J. Eng. Power
,
115
(
4
), pp.
912
920
. 10.1115/1.2911387
5.
Deng
,
H.
,
Qiu
,
L.
,
Tao
,
Z.
, and
Tian
,
S.
,
2013
, “
Heat Transfer Study in Rotating Smooth Square U-Duct at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
66
, pp.
733
744
. 10.1016/j.ijheatmasstransfer.2013.07.080
6.
Saravani
,
M. S.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2018
, “
Effect of Buoyancy and Density Ratio on Heat Transfer in a Smooth Cooling Channel of a Gas Turbine Blade
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, Vol.
5A
, pp.
V05AT11A008
V05AT11A008
.
7.
Li
,
Y.
,
Xu
,
G.
,
Deng
,
H.
, and
Tian
,
S.
,
2014
, “
Buoyancy Effect on Heat Transfer in Rotating Smooth Square U-Duct at High Rotation Number
,”
Propul. Power Res.
,
3
(
3
), pp.
107
120
. 10.1016/j.jppr.2014.07.001
8.
Pascotto
,
M.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2013
, “
Coriolis Effects on the Flow Field Inside a Rotating Triangular Channel for Leading Edge Cooling
,”
ASME J. Turbomach.
,
136
(
3
), p.
031016
. 10.1115/1.4025570
9.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
. 10.1016/0017-9310(88)90235-9
10.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channel With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
. 10.1016/0017-9310(92)90309-G
11.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
. 10.1115/1.1860564
12.
Wright
,
L. M.
,
Liu
,
Y.-H.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071701
. 10.1115/1.2907437
13.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
. 10.1021/ie50324a027
14.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
116
(
January 1994
), pp.
113
123
. 10.1115/1.2928265
15.
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Bergman
,
T. L.
,
2007
,
Fundamental of Heat and Mass Transfer
, 7th ed.,
John Wiley and Sons. Inc.
,
New York
.
16.
Mayo
,
I.
,
Arts
,
T.
, and
Van De Wyer
,
N.
,
2017
, “
Rotation Effects on the Heat Transfer Distribution in a Two-Pass Rotating Internal Cooling Channel Equipped With Triangular Ribs
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017
,
Charlotte, NC
,
June 26–30
, pp.
1
12
.
17.
Berrabah
,
B.
, and
Aminallah
,
M.
,
2017
, “
Effect of Coriolis and Centrifugal Forces on Flow and Heat Transfer at High Rotation Number and High Density Ratio in Non Orthogonally Internal Cooling Channel
,”
Chin. J. Aeronaut.
,
30
(
1
), pp.
216
234
. 10.1016/j.cja.2016.12.020
18.
Landahl
,
M. T.
, and
Mollo-Christensen
,
E.
,
1999
,
Turbulence and Random Processes in Fluid Mechanics
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
19.
Albertson
,
D.
,
Parlange
,
M. B.
, and
Eichinger
,
W. E.
,
1997
, “
The Average Dissipation Rate of Turbulent Kinetic Energy in the Neutral and Unstable Atmospheric Surface Layer
,”
J. Geophys. Res.
,
102
(
96
), pp.
13423
13432
. 10.1029/96JD03346
20.
Addad
,
Y.
,
Gaitonde
,
U.
,
Laurence
,
D.
, and
Rolfo
,
S.
,
2008
, “
Optimal Unstructured Meshing for Large Eddy Simulations
,”
Qual. Reliab. Large-Eddy Simul.
,
12
(
January
), pp.
93
103
. 10.1007/978-1-4020-8578-9_8
21.
Jiang
,
X.
, and
Lai
,
C. H.
,
2009
,
Numerical Techniques for Direct and Large-Eddy Simulations
, 1st ed.,
CRC Press, Taylor and Francis Group
,
London, UK
.
22.
Wheeler
,
A. J.
, and
Ganji
,
A. R.
,
2010
,
Introduction to Engineering Experimentation
, 3rd ed.,
Pearson Higher Education
,
Upper Saddle River, NJ
.
23.
Liu
,
Y.-H.
,
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2006
, “
Rib Spacing Effect on Heat Transfer and Pressure Loss in a Rotating Two-Pass Rectangular Channel (AR = 1:2) With 45-Degree Angled Ribs
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, Vol.
2006
, No.
4238X
, pp.
363
373
.
You do not currently have access to this content.