Abstract

This work investigates the kinetics of a pyrolysis reactor. Pyrolysis is demarcated as a two-step process that is the primary and the secondary decomposition of hardwood in the presence of nitrogen. The qualitative aspect of the analysis is performed by allowing the heterogeneous characteristics of the initial distribution function of volatile content. The temperature inside the reactor varies from 19 °C to 363.761 °C. The pressure of producer gas changes from 6 Pa to 26.8 Pa during the pyrolysis of hardwood, which affects the conversion of biomass with respect to temperature. The weighted fraction of the Weibull and the Rayleigh models is used for modeling the mass variation of the biomass inside the rector. The dimension of the reactor used for the experimental work has a length of 400 mm and a cross-sectional area of 9498.5 mm2. The pyrolysis test rig is programed for the cubical form of thermal history [T = (at3 + bt2 + ct − d)].

References

1.
Quan
,
C.
,
Li
,
A.
, and
Gao
,
N.
,
2009
, “
Thermogravimetric Analysis and Kinetic Study on Large Particles of Printed Circuit Board Wastes
,”
Waste Manage.
,
29
(
8
), pp.
2353
2360
. 10.1016/j.wasman.2009.03.020
2.
Li
,
Z.
,
Liu
,
C.
,
Chen
,
Z.
,
Qian
,
J.
,
Zhao
,
W.
, and
Zhu
,
Q.
,
2009
, “
Analysis of Coals and Biomass Pyrolysis Using the Distributed Activation Energy Model
,”
Bioresour. Technol.
,
100
(
2
), pp.
948
952
. 10.1016/j.biortech.2008.07.032
3.
Yan
,
J. H.
,
Zhu
,
H. M.
,
Jiang
,
X. G.
,
Chi
,
Y.
, and
Cen
,
K. F.
,
2009
, “
Analysis of Volatile Species Kinetics During Typical Medical Waste Materials Pyrolysis Using a Distributed Activation Energy Model
,”
J. Hazard. Mater.
,
162
(
2–3
), pp.
646
651
. 10.1016/j.jhazmat.2008.05.077
4.
Dhaundiyal
,
A.
,
Singh
,
S. B.
,
Hanon
,
M. M.
, and
Rawat
,
R.
,
2018
, “
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium Hysterophorus
,”
Environ. Clim. Technol.
,
22
(
1
), pp.
5
21
. 10.1515/rtuect-2018-0001
5.
Dhaundiyal
,
A.
, and
Tewari
,
P.
,
2017
, “
Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM)
,”
Environ. Clim. Technol.
,
19
(
1
), pp.
15
32
. 10.1515/rtuect-2017-0002
6.
Capart
,
R.
,
Khezami
,
L.
, and
Burnham
,
A. K.
,
2004
, “
Assessment of Various Kinetic Models for the Pyrolysis of a Microgranular Cellulose
,”
Thermochim. Acta
,
417
(
1
), pp.
79
89
. 10.1016/j.tca.2004.01.029
7.
Conesa
,
J. A.
,
Caballero
,
J.
,
Marcilla
,
A.
, and
Font
,
R.
,
1995
, “
Analysis of Different Kinetic Models in the Dynamic Pyrolysis of Cellulose
,”
Thermochim. Acta
,
254
(
C
), pp.
175
192
. 10.1016/0040-6031(94)02102-T
8.
Burnham
,
A. K.
, and
Braun
,
R. L.
,
1999
, “
Global Kinetic Analysis of Complex Materials
,”
Energy Fuels
,
13
(
1
), pp.
1
22
. 10.1021/ef9800765
9.
Dhaundiyal
,
A.
, and
Singh
,
S. B.
,
2016
, “
Distributed Activation Energy Modelling for Pyrolysis of Forest Waste Using Gaussian Distribution
,”
Proc. Latv. Acad. Sci., Sect. B
,
70
(
2
), pp.
64
70
. 10.1515/prolas-2016-0011
10.
Galgano
,
A.
, and
Blasi
,
C. D.
,
2003
, “
Modeling Wood Degradation by the Unreacted-Core-Shrinking Approximation
,”
Ind. Eng. Chem. Res.
,
42
(
10
), pp.
2101
2111
. 10.1021/ie020939o
11.
Dhaundiyal
,
A.
,
Singh
,
S. B.
, and
Hanon
,
M. M.
,
2019
, “
Application of Archimedean Copula in the Non-Isothermal nth Order Distributed Activation Energy Model
,”
Biofuels
,
10
(
2
), pp.
259
270
. 10.1080/17597269.2018.1442662
12.
Dhaundiyal
,
A.
,
Singh
,
S. B.
, and
Hanon
,
M. M.
,
2018
, “
Study of Distributed Activation Energy Model Using Bivariate Distribution Function, f (E1, E2)
,”
Therm. Sci. Eng. Prog.
,
2018
(
5
), pp.
388
404
. 10.1016/j.tsep.2018.01.009
13.
De Caprariis
,
B.
,
De Filippis
,
P.
,
Herce
,
C.
, and
Verdone
,
N.
,
2012
, “
Double-Gaussian Distributed Activation Energy Model for Coal Devolatilization
,”
Energy Fuels
,
26
(
10
), pp.
6153
6159
. 10.1021/ef301092r
14.
Zhang
,
J.
,
Chen
,
T.
,
Wu
,
J.
, and
Wu
,
J.
,
2014
, “
Multi-Gaussian-DAEM-Reaction Model for Thermal Decompositions of Cellulose, Hemicellulose and Lignin: Comparison of N2 and CO2 Atmosphere
,”
Bioresour. Technol.
,
166
, pp.
87
95
. 10.1016/j.biortech.2014.05.030
15.
Constable
,
F. H.
,
1925
, “
The Mechanism of Catalytic Decomposition
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
108
(
746
), pp.
355
378
. 10.1098/rspa.1925.0081
16.
Vand
,
V.
,
1943
, “
A Theory of the Irreversible Electrical Resistance Changes of Metallic Films Evaporated in Vacuum
,”
Proc. Phys. Soc.
,
55
(
3
), pp.
222
246
. 10.1088/0959-5309/55/3/308
17.
Pitt
,
G. J.
,
1962
, “
The Kinetics of the Evolution of Volatile Products From Coal
,”
Fuel
,
41
, pp.
267
274
.
18.
Hanbaba
,
P.
,
1967
,
Reaktionkinetische Untersuchungen sur Kohlenwasserstoffenbindung aus Steinkohlen bie Niedregen Aufheizgeschwindigkeiten
,
University of Aachen
.
19.
Anthony
,
D. B.
, and
Howard
,
J. B.
,
1976
, “
Coal Devolatilization and Hydrogastification
,”
AIChE J.
,
22
(
4
), pp.
625
656
. 10.1002/aic.690220403
20.
Ungerer
,
P.
, and
Pelet
,
R.
,
1987
, “
Extrapolation of the Kinetics of Oil and Gas Formation From Laboratory Experiments to Sedimentary Basins
,”
Nature
,
327
(
6117
), pp.
52
54
. 10.1038/327052a0
21.
Friedman
,
H. L.
,
2007
, “
Kinetics of Thermal Degradation of Char-Forming Plastics From Thermogravimetry. Application to a Phenolic Plastic
,”
J. Polym. Sci. Part C Polym. Symp.
,
6
(
1
), pp.
183
195
. 10.1002/polc.5070060121
22.
Ozawa
,
T.
,
1965
, “
A New Method of Analyzing Thermogravimetric Data
,”
Bull. Chem. Soc. Jpn.
,
38
(
11
), pp.
1881
1886
. 10.1246/bcsj.38.1881
23.
Miura
,
K.
,
1995
, “
A New and Simple Method to Estimate f(E) and Ko(E) in the Distributed Activation Energy Model From Three Sets of Experimental Data
,”
Energy Fuels
9
(
2
), pp.
302
307
. 10.1021/ef00050a014
24.
Miura
,
K.
, and
Maki
,
T.
,
1998
, “
A Simple Method for Estimating f(E) and K0(E) in the Distributed Activation Energy Model
,”
Energy and Fuels
,
12
(
5
), pp.
864
869
. 10.1021/ef970212q
25.
Dhaundiyal
,
A.
, and
Gupta
,
V. K.
,
2014
, “
The Analysis of Pine Needles as a Substrate for Gasification
,”
Hydro Nepal J. Water Energy Environ.
,
15
(
2
), pp.
73
81
. 3126/hn.v15i0.11299
26.
Ding
,
Y.
,
Ezekoye
,
O. A.
,
Lu
,
S.
,
Wang
,
C.
, and
Zhou
,
R.
,
2017
, “
Comparative Pyrolysis Behaviors and Reaction Mechanisms of Hardwood and Softwood
,”
Energy Convers. Manage.
,
132
, pp.
102
109
. 10.1016/j.enconman.2016.11.016
27.
Grigiante
,
M.
,
Brighenti
,
M.
, and
Antolini
,
D.
,
2016
, “
A Generalized Activation Energy Equation for Torrefaction of Hardwood Biomasses Based on Isoconversional Methods
,”
Renewable Energy
99
, pp.
1318
1326
. 10.1016/j.renene.2016.07.054
28.
Dhaundiyal
,
A.
,
Toth
,
L.
,
Backsai
,
I.
, and
Atsu
,
D.
,
2019
, “
Analysis of Pyrolysis Reactor for Hardwood (Acacia) Chips
,”
Renewable Energy
,
147
(
1
), pp.
1979
1989
. 10.1016/j.renene.2019.09.095
29.
Herdem
,
M. S.
,
Lorena
,
G.
, and
Wen
,
J. Z.
,
2019
, “
Simulation and Performance Investigation of a Biomass Gasification System for Combined power and Heat Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112002
. 10.1115/1.4043697
30.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11), p.
112001
. 10.1115/1.4043654
31.
Yi
,
Z.
,
Zhou
,
Z.
,
Tao
,
Q.
, and
Jiang
,
Z.
, “
Experimental and Numerical Investigations in a Gas-Fired Boiler With Combustion Stabilizing Device
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112201
. 10.1115/1.4043637
You do not currently have access to this content.