Abstract

With the increasing demands of energy-saving from industries, the low-flow coefficient and low specific speed centrifugal compressors have gained more attention. The design of this type of compressor faced many challenges, for example, high secondary flow losses, high tip leakage losses, and low exit width based on a Reynolds number. The design also lacks a reliable database for preliminary studies. The impeller design studies were limited. Most designs for low-flow coefficient and low specific speed compressor follow the traditional methods. This paper presents design studies and discusses some unique design features to improve performance of this type of compressor. The detail computational fluids dynamics (CFD) results are presented to demonstrate the success of the design strategies. A prototype compressor for fuel cell applications was built, and performance tests were performed. The test results are compared with those of the computational analysis, and the agreement is reasonably satisfactory. The compressor meets the customer's performance goals. The design features can be used for future low-flow coefficient and low specific speed centrifugal compressor design.

References

1.
Abbaspour
,
M.
,
Krishnaswami
,
P.
, and
Chapman
,
K. S.
,
2007
, “
Transient Optimization in Natural Gas Compressor Stations for Linepack Operation
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
314
324
. 10.1115/1.2790983
2.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M. A.
, and
AlSadah
,
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042008
. 10.1115/1.4042087
3.
Methel
,
J.
,
Gooding
,
W. J.
,
Fabian
,
J. C.
,
Key
,
N. L.
, and
Whitlock
,
M.
,
2016
, “
The Development of a Low Specific Speed Centrifugal Compressor Research Facility
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, pp.
1
11
.
4.
Lettieri
,
C.
,
Baltadjiev
,
N.
,
Casey
,
M.
, and
Spakovsky
,
Z.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomac.
,
136
(
8
), p.
081008
. 10.1115/1.4026322
5.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
Development of a Low Flow Coefficient Single Stage Centrifugal Compressor
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
4
), pp.
282
289
. 10.1080/15502280902939460
6.
Zheng
,
X.
,
Zhang
,
Y.
,
He
,
H.
, and
Qiu
,
Z.
,
2008
, “
Design of a Centrifugal Compressor with Low Specific Speed for Automotive Fuel Cell
,”
ASME Turbo Expo 2008
,
Berlin, Germany
,
June 9–13
, pp.
1
6
.
7.
Xu
,
C.
,
Yang
,
H.
,
Jiang
,
Y.
, and
Yi
,
Z.
,
2019
, “
The Development of an Integrally Geared Centrifugal Compressor
,”
Int. J. Fluid Mech. Therm. Sci.
,
5
(
1
), pp.
1
9
. 10.11648/j.ijfmts.20190501.11
8.
Xu
,
C.
, and
Amano
,
R. S.
,
2019
, “
The Performance Influences of a Centrifugal Compressor Due to Scroll Local Deformation
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
091202
. 10.1115/1.4043134
9.
Dalbert
,
P.
,
Ribi
,
B.
, and
Casey
,
M. V.
,
1999
, “
Radial Compressor Design for Industrial Compressor
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
213
, pp.
71
83
. 10.1243/0954406991522194
10.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
The Development of a Centrifugal Compressor Impeller
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
4
), pp.
290
301
. 10.1080/15502280903023165
11.
Pischinger
,
S.
,
Schönfelder
,
C.
,
Bornscheuer
,
W.
,
Kindl
,
H.
, and
Wiartalla
,
A.
,
2001
, “
Integrated Air Supply and Humidification Concepts for Fuel Cell Systems
,”
SAE Paper 2001-01-0233
,
SAE International
,
Warrendale, PA
.
12.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
.10.1115/1.4040581
13.
Tyackea
,
J.
,
Vadlamanib
,
N. R.
,
Trojakc
,
W.
,
Watson
,
R.
,
Mac
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, pp.
1
21
. 10.1016/j.paerosci.2019.100554
14.
Xu
,
C.
,
2007
, “
“Design Experience and Considerations for Centrifugal Compressor Development
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
221
(
2
), pp.
273
287
. 10.1243/09544100JAERO103
15.
Xu
,
C.
, and
Amano
,
R. S.
,
2012
, “
Empirical Design Considerations for Industrial Centrifugal Compressors
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
16
.
16.
Xu
,
C.
, and
Amano
,
R. S.
,
2009
, “
On the Development of Turbomachine Blade Aerodynamic Design System
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
10
(
3
), pp.
186
196
. 10.1080/15502280902795052
17.
Xu
,
C.
, and
Amano
,
R. S.
,
2012
, “
Aerodynamic and Structure Considerations in Centrifugal Compressor Design-Blade Lean Effects
,”
GT2012–68027
.
18.
Balje
,
O. E.
,
1964
, “
A Study on Reynolds Number Effects in Turbomachines
,”
ASME J. Eng. Gas Turbines Power
,
86
(
3
), pp.
227
235
. 10.1115/1.3677584
19.
Brun
,
K.
, and
Kurz
,
R.
,
2005
, “
Analysis of Secondary Flow in Centrifugal Impellers
,”
Int. J. Rotating Mach.
,
2005
(
1
)
, pp.
45
52
. 10.1155/IJRM.2005.45
20.
Xu
,
C.
, and
Amano
,
R. S.
,
2017
, “
Centrifugal Compressor Performance Improvements Through Impeller Splitter Location
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051201
. 10.1115/1.4037813
21.
Xu
,
C.
, and
Amano
,
R. S.
,
2018
, “
Effects of Asymmetric Radial Clearance on Performance of a Centrifugal Compressor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052003
. 10.1115/1.4038387
22.
Xu
,
C.
, and
Amano
,
R. S.
,
2008
, “
Computational Analysis of Swept Compressor Rotor Blades
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
(
6
), pp.
374
382
. 10.1080/15502280802365840
23.
Denton
,
J.
, and
Dawes
,
W.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
. 10.1243/0954406991522211
24.
ANSYS Inc.
,
2013
,
Ansys Version 15
,
ANSYS, Inc.
,
Canonsburg, PA
.
25.
Xu
,
C.
, and
Amano
,
R. S.
,
2012
, “
Meridional Considerations of the Centrifugal Compressor Development
,”
Int. J. Rotating Mach.
,
2012
. 10.1155/2012/518381
26.
Xu
,
C.
, and
Amano
,
R. S.
,
2005
, “
Numerical Prediction of Swept Blade Aerodynamic Effects
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, pp.
1
9
.
You do not currently have access to this content.