Abstract

Conventional pyrolysis is a relatively simple way for biochar production; however, a single biomass feedstock approach is not promising for the development of multiple properties of biochar used in various applications. This study provides a detailed comparison in terms of pyrolysis kinetics between the cow manure and chicken manure, in addition to the co-pyrolysis by mixing the two livestock at different ratios. Eight different heating rates were tested, 5–40 °C/min with 5 °C/min step, on both livestock using the nitrogen as a gas agent with a flowrate of 50 ml/min. The initial results show that for the slow heating rates, 5 °C/min, the thermal degradation of the cow manure is different compared to that obtained from chicken manure. For the cow manure, the first peak, associated with hemicellulose decomposition, is higher than the second peak, associated with cellulose decomposition, which is the other way around for chicken manure. At 5 °C /min, the hemicellulose decomposition took place at 250 °C and 300 °C for the chicken manure and cow manure, respectively. The cellulose decomposition was started at 300 °C for chicken manure and 470 °C for cow manure. The lowest heat rate was selected for the co-pyrolysis case study to allow a quasi-equilibrium state to avoid measurement errors and heat transfer limitation in terms of thermal lag. Co-pyrolysis is studied with different blend ratios between the chicken and cow manure, where the 40% cow manure shows a positive result in terms of keeping an exothermic reaction over the co-pyrolysis process.

References

1.
Straub
,
D.
,
1977
, “
Hot Issue—Chicken Manure
,” Tilth Producers Quarterly. A Journal of Organic and Sustainable Agriculture. United States Department of Agriculture (USDA) (1995). Laboratory Methods for Soil and Foliar Analyses in Long-Term Environment Monitory Programs. EPA/600/R-95/077.
2.
Omiti
,
J. M.
,
Freeman
,
H. A.
,
Kaguongo
,
W.
, and
Bett
,
C.
,
1999
, “
Soil Fertility Maintenance in Eastern Kenya: Current Practices, Constraints, and Opportunities
,” Kenya, CARMASAK Working Paper No. 1.KARI/ICRISAT.
3.
Clay
,
D. C.
,
Kelly
,
V.
,
Mpyisi
,
E.
, and
Reardon
,
T.
,
2002
,
Natural Resources Management in African Agriculture: Understanding and Improving Current Practices
,
CABI Publishing
,
Oxon and New York
, pp.
103
114
.
4.
Heathman
,
G. C.
,
Sharpley
,
A. N.
,
Smith
,
S. J.
, and
Robinson
,
J. S.
,
1995
, “
Land Application of Poultry Litter and Water Quality in Oklahoma U.S.A
,”
Fert. Res.
,
40
(
3
), pp.
165
173
. 10.1007/BF00750462
5.
Haapapuro
,
E. R.
,
Barnard
,
N. D.
, and
Simon
,
M.
,
1997
, “
Review—Animal Waste Used as Livestock Feed: Dangers to Human Health
,”
Prev. Med.
,
26
(
5
), pp.
599
602
. 10.1006/pmed.1997.0220
6.
Li
,
Z.
, and
Shuman
,
L. M.
,
1997
, “
Mobility of Zn, Cd and Pb in Soils as Affected by Poultry Litter Extract—I. Leaching is Soil Columns
,”
Environ. Pollut.
,
95
(
2
), pp.
219
226
. 10.1016/S0269-7491(96)00077-2
7.
Dalólio
,
F. S.
,
Nogueira da Silva
,
J.
,
Carneiro de Oliveira
,
A. C.
,
Ferreira Tinôco
,
I. F.
,
Barbosa
,
R. C.
,
Resende
,
M. O.
,
Teixeira Albino
,
L. F.
, and
Teixeira Coelho
,
S.
,
2017
, “
Poultry Litter as Biomass Energy: A Review and Future Perspectives
,”
Renewable Sustainable Energy Rev.
,
76
(
C
), pp.
941
949
. 10.1016/j.rser.2017.03.104
8.
Billen
,
P.
,
Costa
,
J.
,
Van der Aa
,
L.
,
Van Caneghem
,
J.
, and
Vandecasteele
,
C.
,
2015
, “
Electricity From Poultry Manure: A Cleaner Alternative to Direct Land Application
,”
J. Cleaner Prod.
,
96
, pp.
467
475
. 10.1016/j.jclepro.2014.04.016
9.
Florin
,
N. H.
,
Maddocks
,
A. R.
,
Wood
,
S.
, and
Harris
,
A. T.
,
2019
, “
High-Temperature Thermal Destruction of Poultry Derived Wastes for Energy Recovery in Australia
,”
Waste Manage.
,
24
, pp.
1399
1408
. 10.1016/j.wasman.2008.10.002
10.
Salman
,
C. A.
,
Schwede
,
S.
,
Thorin
,
E.
, and
Yan
,
J.
,
2017
, “
Predictive Modelling and Simulation of Integrated Pyrolysis and Anaerobic Digestion Process
,”
Energy Proc.
,
105
, pp.
850
857
. 10.1016/j.egypro.2017.03.400
11.
Demirbas
,
A.
,
2007
, “
The Influence of Temperature on the Yields of Compounds Existing in Bio-Oils Obtained From Biomass Samples via Pyrolysis
,”
Fuel Proc. Technol.
,
88
(
6
), pp.
591
597
. 10.1016/j.fuproc.2007.01.010
12.
Maschio
,
G.
,
Koufopanos
,
C.
, and
Lucchesi
,
A.
,
1992
, “
Pyrolysis, a Promising Route for Biomass Utilization
,”
Bioresour. Technol.
,
42
(
3
), pp.
219
231
. 10.1016/0960-8524(92)90025-S
13.
Marsh
,
R.
,
Hewlett
,
S.
,
Griffiths
,
T.
, and
Williams
,
K.
,
2007
, “
Advanced Thermal Treatment for Solid Waste—A Waste Manager’s Guide
,”
Proceeding of the 22nd International Conference on Solid Waste Management and Technology
,
Philadelphia, PA
,
Mar. 18–21
, pp.
548
557
.
14.
Demirbas
,
A.
,
2001
, “
Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals
,”
Energy Convers. Manage.
,
42
(
11
), pp.
1357
1378
. 10.1016/S0196-8904(00)00137-0
15.
Davalos
,
J. Z.
,
Roux
,
M. V.
, and
Jimenez
,
P.
,
2002
, “
Evaluation of Poultry Litter as a Feasible Fuel
,”
Thermochim. Acta
,
394
(
1e2
), p.
261e266
. 10.1016/S0040-6031(02)00256-3
16.
Junga
,
R.
,
Knauer
,
W.
,
Niemiec
,
P.
, and
Tańczuk
,
M.
,
2017
, “
Experimental Tests of Co-combustion of Laying Hens Manure With Coal by Using Thermogravimetric Analysis
,”
Renewable Energy
,
111
, pp.
245
255
. 10.1016/j.renene.2017.03.099
17.
Beagle
,
E.
,
1978
,
Rice Husk Conversion to Energy
,
Agricultural Services Bulletin 31, Food and Agricultural Organization
,
Rome, Italy
.
18.
Kaupp
,
A.
,
1984
,
Gasification of Rice Hulls, Theory and Praxis
,
Friedr. Vieweg and Sohn
,
Braunschweig, Germany
.
19.
Bridgwater
,
A. V.
,
1989
, “Pyrolysis, Gasification and Liquefaction Technologies,”
Pyrolysis Gasification
,
G. L.
Ferrero
,
K.
Maniatis
,
A.
Buekens
, and
A. V.
Bridgwater
, eds.,
Elsevier
,
Amsterdam
, p.
198
.
20.
Ahiduzzaman
,
M.
, and
Islam
,
A. K. M. S.
,
2015
, “
Thermo-gravimetric and Kinetic Analysis of Different Varieties of Rice Husk
,”
Proc. Eng.
,
105
, pp.
646
651
. 10.1016/j.proeng.2015.05.043
21.
Hossain
,
M. S.
,
Islam
,
M. R.
,
Rahman
,
M. S.
,
Kader
,
M. A.
, and
Haniu
,
H.
,
2017
, “
Biofuel From Co-pyrolysis of Solid Tire Waste and Rice Husk
,”
Energy Proc.
,
110
, pp.
453
458
. 10.1016/j.egypro.2017.03.168
22.
Costa
,
P.
,
Pinto
,
F.
,
Miranda
,
M.
,
André
,
R.
, and
Rodrigues
,
M.
,
2014
, “
Study of the Experimental Conditions of the Co-pyrolysis of Rice Husk and Plastic Wastes
,”
Chem. Eng. Trans.
,
39
(
Special Issue
), pp.
1639
1644
. 10.3303/CET1439274
23.
Ng
,
W. C.
,
You
,
S.
,
Ling
,
R.
,
Gin
,
K. Y.-H.
,
Dai
,
Y.
, and
Wang
,
C.-H.
,
2017
, “
Co-gasification of Woody Biomass and Chicken Manure: Syngas Production, Biochar Reutilization, and Cost-Benefit Analysis
,”
Energy
,
139
, pp.
732
742
. 10.1016/j.energy.2017.07.165
24.
Li
,
Y.
,
Zhang
,
R.
,
He
,
Y.
,
Zhang
,
C.
,
Liu
,
X.
,
Chen
,
C.
, and
Liu
,
G.
,
2014
, “
Anaerobic Co-digestion of Chicken Manure and Corn Stover in Batch and Continuously Stirred Tank Reactor (CSTR)
,”
Bioresour. Technol.
,
156
, pp.
342
347
. 10.1016/j.biortech.2014.01.054
25.
Hussein
,
M. S.
,
Burra
,
K. G.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2017
, “
Temperature and Gasifying Media Effects on Chicken Manure Pyrolysis and Gasification
,”
Fuel
,
202
, pp.
36
45
. 10.1016/j.fuel.2017.04.017
26.
Burra
,
K. G.
,
Hussein
,
M. S.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2016
, “
Syngas Evolutionary Behavior During Chicken Manure Pyrolysis and Air Gasification
,”
Appl. Energy
,
181
, pp.
408
415
. 10.1016/j.apenergy.2016.08.095
27.
Hussein
,
M. S.
,
Burra
,
K. G.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2017
, “
Effect of Oxygen Addition in Steam Gasification of Chicken Manure
,”
Fuel
,
189
, pp.
428
435
. 10.1016/j.fuel.2016.11.005
28.
Tańczuk
,
M.
,
Junga
,
R.
,
Kolasa-Więcek
,
A.
, and
Niemiec
,
P.
,
2019
, “
Assessment of the Energy Potential of Chicken Manure in Poland
,”
Energies
,
12
(
7
), p.
1244
. 10.3390/en12071244
29.
Atienza-Martínez
,
M.
,
Ábrego
,
J.
,
Gea
,
G.
, and
Marías
,
F.
,
2019
, “
Pyrolysis of Dairy Cattle Manure: Evolution of Char Characteristics
,”
J. Anal. Appl. Pyrolysis
,
145
. 10.1016/j.jaap.2019.104724
30.
Selim
,
O. M.
,
Hussein
,
M. S.
, and
Amano
,
R. S.
,
2020
, “
Effect of Heating Rate on Chemical Kinetics of Chicken Manure With Different Gas Agents
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102104
. 10.1115/1.4047018
31.
Thermal Analysis Instruments
, “
Shimadzu. DTG 60 Technical Manual
,” https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/literature/thermal/c160-e006L.pdf
32.
White
,
J. E.
,
Catallo
,
W. J.
, and
Legendre
,
B. J.
,
2011
, “
Biomass Pyrolysis Kinetics: A Comparative Critical Review With Relevant
,”
J. Anal. Appl. Pyrolysis.
,
91
(
1
), pp.
1
33
. 10.1002/chin.201131265
33.
Phyllis2
,
2015
, “
Database for Biomass and Waste
,” Online, https://www.ecn.nl/phyllis2/Biomass/View/3501
34.
Ruiz-Gómez
,
N.
,
Quispe
,
V.
,
Ábrego
,
J.
,
Atienza-Martínez
,
M.
,
Murillo
,
M. B.
, and
Gea
,
G.
,
2017
, “
Co-pyrolysis of Sewage Sludge and Manure
,”
Waste Manage.
,
59
, pp.
211
221
. 10.1016/j.wasman.2016.11.013
You do not currently have access to this content.