Abstract

Engine calibration requires detailed feedback information that can reflect the combustion process as the optimized objective. Indicated mean effective pressure (IMEP) is such an indicator describing an engine’s capacity to do work under different combinations of control variables. In this context, it is of interest to find cost-effective solutions that will reduce the number of experimental tests. This paper proposes a random forest machine learning model as a cost-effective tool for optimizing engine performance. Specifically, the model estimated IMEP for a natural gas spark ignited engine obtained from a converted diesel engine. The goal was to develop an economical and robust tool that can help reduce the large number of experiments usually required throughout the design and development of internal combustion engines. The data used for building such correlative model came from engine experiments that varied the spark advance, fuel-air ratio, and engine speed. The inlet conditions and the coolant/oil temperature were maintained constant. As a result, the model inputs were the key engine operation variables that affect engine performance. The trained model was shown to be able to predict the combustion-related feedback information with good accuracy (R2 ≈ 0.9 and MSE ≈ 0). In addition, the model accurately reproduced the effect of control variables on IMEP, which would help narrow the choice of operating conditions for future designs of experiment. Overall, the machine learning approach presented here can provide new chances for cost-efficient engine analysis and diagnostics work.

References

1.
Huang
,
S.
,
Li
,
T.
,
Ma
,
P.
,
Xie
,
S.
,
Zhang
,
Z.
, and
Chen
,
R.
,
2019
, “
Quantitative Evaluation of the Breakdown Process of Spark Discharge for Spark-Ignition Engines
,”
J. Phys. D: Appl. Phys.
,
53
(
4
), p.
045501
. 10.1088/1361-6463/ab56da
2.
Zhao
,
L.
,
Ameen
,
M.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Kumar
,
P.
,
Tzanetakis
,
T.
, and
Traver
,
M.
,
2020
,
Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine
.
SAE Technical Paper 2020-01-0778
.
3.
Jiang
,
L.
,
Wang
,
Y. D.
,
Roskilly
,
A. P.
,
Xie
,
X. L.
,
Zhang
,
Z. C.
, and
Wang
,
R. Z.
,
2018
, “
Investigation on Thermal Properties of a Novel Fuel Blend and Its Diesel Engine Performance
,”
Energy Convers. Manage.
,
171
(
1
), pp.
1540
1548
. 10.1016/j.enconman.2018.06.085
4.
Xu
,
Z.
,
Ji
,
F.
,
Ding
,
S.
,
Zhao
,
Y.
,
Wang
,
Y.
,
Zhang
,
Q.
,
Du
,
F.
, and
Zhou
,
Y.
,
2020
, “
Simulation and Experimental Investigation of Swirl-Loop Scavenging in Two-Stroke Diesel Engine With Two Poppet Valves
,”
Int. J. Engine Res.
. 10.1177/1468087420916083
5.
Soloiu
,
V.
,
Duggan
,
M.
,
Ochieng
,
H.
,
Williams
,
D.
,
Molina
,
G.
, and
Vlcek
,
B.
,
2013
, “
Investigation of Low Temperature Combustion Regimes of Biodiesel With n-Butanol Injected in the Intake Manifold of a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041101
. 10.1115/1.4023743
6.
Hamedović
,
H.
,
Raichle
,
F.
,
Breuninger
,
J.
,
Fischer
,
W.
,
Fishcer
,
W.
,
Dieterle
,
W.
,
Klenk
,
M.
, and
Böhme
,
J. F.
,
2005
, “
IMEP-Estimation and In-Cylinder Pressure Reconstruction for Multicylinder SI-Engine by Combined Processing of Engine Speed and One Cylinder Pressure
,”
SAE Trans.
,
114
(
3
), pp.
135
142
. 10.4271/2005-01-0053
7.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
8.
Sun
,
Y.
,
Wang
,
H.
,
Yang
,
C.
, and
Wang
,
Y.
,
2017
, “
Development and Validation of a Marine Sequential Turbocharging Diesel Engine Combustion Model Based on Double Wiebe Function and Partial Least Squares Method
,”
Energy Convers. Manage.
,
151
(
1
), pp.
481
495
. 10.1016/j.enconman.2017.08.085
9.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Improved Thermodynamic Model for Lean Natural Gas Spark Ignition in a Diesel Engine Using a Triple Wiebe Function
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062303
. 10.1115/1.4045534
10.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
. 10.1115/1.4043709
11.
Li
,
H.
,
Neill
,
W. S.
, and
Chippior
,
W. L.
,
2012
, “
An Experimental Investigation of HCCI Combustion Stability Using n-Heptane
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022204
. 10.1115/1.4005700
12.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
, “
Characterizing Two-Stage Combustion Process in a Natural Gas Spark Ignition Engine Based on Multi-Wiebe Function Model
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102302
. 10.1115/1.4046793
13.
Duan
,
X.
,
Liu
,
Y.
,
Liu
,
J.
,
Lai
,
M. C.
,
Jansons
,
M.
,
Guo
,
G.
,
Zhang
,
S.
, and
Tang
,
Q.
,
2019
, “
Experimental and Numerical Investigation of the Effects of Low-Pressure, High-Pressure and Internal EGR Configurations on the Performance, Combustion and Emission Characteristics in a Hydrogen-Enriched Heavy-Duty Lean-Burn Natural Gas SI Engine
,”
Energy Convers. Manage.
,
195
(
1
), pp.
1319
1333
. 10.1016/j.enconman.2019.05.059
14.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112207
. 10.1115/1.4043749
15.
Duan
,
X.
,
Liu
,
Y.
,
Lai
,
M. C.
,
Guo
,
G.
,
Liu
,
J.
,
Chen
,
Z.
, and
Deng
,
B.
,
2019
, “
Effects of Natural Gas Composition and Compression Ratio on the Thermodynamic and Combustion Characteristics of a Heavy-Duty Lean-Burn SI Engine Fueled With Liquefied Natural Gas
,”
Fuel
,
254
(
1
), p.
115733
. 10.1016/j.fuel.2019.115733
16.
Duan
,
X.
,
Li
,
Y.
,
Liu
,
Y.
,
Liu
,
J.
,
Wang
,
S.
, and
Guo
,
G.
,
2020
, “
Quantitative Investigation the Influences of the Injection Timing Under Single and Double Injection Strategies on Performance, Combustion and Emissions Characteristics of a GDI SI Engine Fueled With Gasoline/Ethanol Blend
,”
Fuel
,
260
(
1
), p.
116363
. 10.1016/j.fuel.2019.116363
17.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
Flame Development Analysis in a Diesel Optical Engine Converted to Spark Ignition Natural Gas Operation
,”
Appl. Energy
,
230
(
1
), pp.
1205
1217
. 10.1016/j.apenergy.2018.09.059
18.
Li
,
H.
,
Gatts
,
T.
,
Liu
,
S.
,
Wayne
,
S.
,
Clark
,
N.
, and
Mather
,
D.
,
2018
, “
An Experimental Investigation on the Combustion Process of a Simulated Turbocharged Spark Ignition Natural Gas Engine Operated on Stoichiometric Mixture
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091504
. 10.1115/1.4038692
19.
Huang
,
S.
,
Li
,
T.
,
Zhang
,
Z.
, and
Ma
,
P.
,
2019
, “
Rotational and Vibrational Temperatures in the Spark Plasma by Various Discharge Energies and Strategies
,”
Appl. Energy
,
251
(
1
), p.
113358
. 10.1016/j.apenergy.2019.113358
20.
Duan
,
X.
,
Liu
,
J.
,
Yao
,
J.
,
Chen
,
Z.
,
Wu
,
C.
,
Chen
,
C.
, and
Dong
,
H.
,
2018
, “
Performance, Combustion and Knock Assessment of a High Compression Ratio and Lean-Burn Heavy-Duty Spark-Ignition Engine Fueled With n-Butane and Liquefied Methane Gas Blend
,”
Energy
,
158
(
1
), pp.
256
268
. 10.1016/j.energy.2018.03.014
21.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Single and Double Wiebe Function Combustion Model for a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition
,”
Appl. Energy
,
248
(
1
), pp.
95
103
. 10.1016/j.apenergy.2019.04.098
22.
Zhang
,
S.
,
Duan
,
X.
,
Liu
,
Y.
,
Guo
,
G.
,
Zeng
,
H.
,
Liu
,
J.
,
Lai
,
M. C.
,
Talekar
,
A.
, and
Yuan
,
Z.
,
2019
, “
Experimental and Numerical Study the Effect of Combustion Chamber Shapes on Combustion and Emissions Characteristics in a Heavy-Duty Lean Burn SI Natural Gas Engine Coupled With Detail Combustion Mechanism
,”
Fuel
,
258
(
1
), p.
116130
. 10.1016/j.fuel.2019.116130
23.
Li
,
Y.
,
Li
,
H.
,
Guo
,
H.
,
Li
,
Y.
, and
Yao
,
M.
,
2017
, “
A Numerical Investigation on Methane Combustion and Emissions From a Natural Gas-Diesel Dual Fuel Engine Using CFD Model
,”
Appl. Energy
,
205
(
1
), pp.
153
162
. 10.1016/j.apenergy.2017.07.071
24.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Queck
,
C. W.
, and
Gan
,
S.
,
2012
, “
Artificial Neural Networks Modelling of Engine-Out Responses for a Light-Duty Diesel Engine Fueled With Biodiesel Blends
,”
Appl. Energy
,
92
(
1
), pp.
769
777
. 10.1016/j.apenergy.2011.08.027
25.
Wang
,
J.
,
Duan
,
X.
,
Liu
,
Y.
,
Wang
,
W.
,
Liu
,
J.
,
Lai
,
M. C.
,
Li
,
Y.
, and
Guo
,
G.
,
2020
, “
Numerical Investigation of Water Injection Quantity and Water Injection Timing on the Thermodynamics, Combustion and Emissions in a Hydrogen Enriched Lean-Burn Natural Gas SI Engine
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17935
17952
. 10.1016/j.ijhydene.2020.04.146
26.
Wang
,
H.
,
Li
,
X.
,
Wang
,
Y.
, and
Li
,
H.
,
2018
, “
An Experimental Study on Fuel Economy Improvement of a Marine Diesel Engine Using a Sequential Turbocharging System
,”
ASME 2018 Internal Combustion Engine Division Fall Technical Conference
,
American Society of Mechanical Engineers
,
San Diego, CA
,
Nov. 4–7
, Paper ICEF2018-9569.
27.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2018
, “
3D CFD Simulation of a CI Engine Converted to SI Natural Gas Operation Using the G-Equation
,”
Fuel
,
232
(
1
), pp.
833
844
. 10.1016/j.fuel.2018.05.159
28.
Kiani
,
M. K. D.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Nikbakht
,
A. M.
, and
Najafi
,
G.
,
2010
, “
Application of Artificial Neural Networks for the Prediction of Performance and Exhaust Emissions in SI Engine Using Ethanol-Gasoline Blends
,”
Energy
,
35
(
1
), pp.
65
69
. 10.1016/j.energy.2009.08.034
29.
Yusaf
,
T. F.
,
Buttsworth
,
D. R.
,
Saleh
,
K. H.
, and
Yousif
,
B. F.
,
2010
, “
CNG-Diesel Engine Performance and Exhaust Emission Analysis With the Aid of Artificial Neural Network
,”
Appl. Energy
,
87
(
5
), pp.
1661
1669
. 10.1016/j.apenergy.2009.10.009
30.
Togun
,
N. K.
, and
Baysec
,
S.
,
2010
, “
Prediction of Torque and Specific Fuel Consumption of a Gasoline Engine by Using Artificial Neural Networks
,”
Appl. Energy
,
87
(
1
), pp.
349
355
. 10.1016/j.apenergy.2009.08.016
31.
Ghobadian
,
B.
,
Rahimi
,
H.
,
Nikbakht
,
A. M.
,
Najafi
,
G.
, and
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network
,”
Renew. Energy
,
34
(
4
), pp.
976
982
. 10.1016/j.renene.2008.08.008
32.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanlı
,
A.
,
Deniz Karaoglan
,
A.
,
Okkan
,
U.
, and
Sureyya Kocak
,
M.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
. 10.1115/1.4032941
33.
Paul
,
A.
,
Bhowmik
,
S.
,
Panua
,
R.
, and
Debroy
,
D.
,
2018
, “
Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural gas Flowrates
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112201
. 10.1115/1.4040380
34.
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Bommisetty
,
H. K.
, and
Ulishney
,
C.
,
2019
, “
Conversion of a Heavy-Duty Diesel Engine to Natural-gas Spark-Ignition Operation: Test Bench Development
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
,
Salt Lake City, UT
,
Nov. 11–14
, Paper IMECE2019-10728.
35.
Gasbarro
,
L.
,
Liu
,
J.
,
Ulishney
,
C.
,
Dumitrescu
,
C. E.
,
Ambrogi
,
L.
, and
Battistoni
,
M.
,
2019
, “
Development of the Control and Acquisition System for a Natural-Gas Spark-Ignition Engine Test Bench
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
,
American Society of Mechanical Engineers
,
Salt Lake City, UT
,
Nov. 11–14
,
Paper IMECE2019-11485
.
36.
Liu
,
M.
,
Wang
,
M.
,
Wang
,
J.
, and
Li
,
D.
,
2013
, “
Comparison of Random Forest, Support Vector Machine and Back Propagation Neural Network for Electronic Tongue Data Classification: Application to the Recognition of Orange Beverage and Chinese Vinegar
,”
Sens. Actuators, B
,
177
(
1
), pp.
970
980
. 10.1016/j.snb.2012.11.071
37.
Ahmad
,
M. W.
,
Mourshed
,
M.
, and
Rezgui
,
Y.
,
2017
, “
Trees vs Neurons: Comparison Between Random Forest and ANN for High-Resolution Prediction of Building Energy Consumption
,”
Energy Build.
,
147
(
1
), pp.
77
89
. 10.1016/j.enbuild.2017.04.038
38.
Lei
,
C.
,
Deng
,
J.
,
Cao
,
K.
,
Xiao
,
Y.
,
Ma
,
L.
,
Wang
,
W.
,
Ma
,
T.
, and
Shu
,
C.
,
2019
, “
A Comparison of Random Forest and Support Vector Machine Approaches to Predict Coal Spontaneous Combustion in Gob
,”
Fuel
,
239
(
1
), pp.
297
311
. 10.1016/j.fuel.2018.11.006
39.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by Random Forest
,”
R News
,
2
(
3
), pp.
18
22
.
40.
Quinlan
,
J. R.
,
1987
, “
Simplifying Decision Trees
,”
Int. J. Man-Mach. Stud.
,
27
(
3
), pp.
221
234
. 10.1016/S0020-7373(87)80053-6
41.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-in-Piston Geometry
,”
Energy Convers. Manage.
,
183
(
1
), pp.
73
83
. 10.1016/j.enconman.2018.12.118
42.
Cameron
,
A. C.
, and
Windmeijer
,
F. A.
,
1997
, “
An R-Squared Measure of Goodness of Fit for Some Common Nonlinear Regression Models
,”
J. Econom.
,
77
(
2
), pp.
329
342
. 10.1016/S0304-4076(96)01818-0
43.
Thompson
,
P. A.
,
1990
, “
An MSE Statistic for Comparing Forecast Accuracy Across Series
,”
Int. J. Forecast.
,
6
(
2
), pp.
219
227
. 10.1016/0169-2070(90)90007-X
44.
Langness
,
C.
,
Mattson
,
J.
, and
Depcik
,
C.
,
2017
, “
Moderate Substitution of Varying Compressed Natural Gas Constituents for Assisted Diesel Combustion
,”
Combust. Sci. Technol.
,
189
(
8
), pp.
1354
1372
. 10.1080/00102202.2017.1295040
You do not currently have access to this content.