Abstract

In this work, a double-high swirl gas turbine model combustor (GTMC) has been experimentally investigated to identify the effects of air partitioning and swirlers geometry on combustion characteristics in terms of flame stability, exhaust gas temperature, NOx generation, and combustion efficiency. This high swirl model combustor is originally developed in the German Aerospace Center (DLR) and known as GTMC and recently reconstructed at Sharif University's Combustion Laboratory (named as SGTMC). Here, SGTMC run for liquefied petroleum gas (LPG) fuel and air oxidizer at room temperature and atmospheric pressure. Eleven different burner geometries, M1–M11, are considered for the aims of this work. Furthermore, the effects of burner confinement are also investigated. The results show that under the confined state, the flame has a lower width and height than the unconfined one. Exchanging the swirlers of annular and central air inlets shows a more stable and lifted V type flame with almost zero levels of CO and CH4. In addition, measurement showed that the annular swirler removing leads to incomplete combustion. Moreover, an increment in discharged air velocity leads to more completed combustion and less pollutant exhaust gas but the attachment of flame to the burner hub. Strengthening the flow channeling is not reasonable in terms of emission aspects. Moreover, burner configuring to counterrotating swirlers leads to a more stable flame but with lower combustion efficiency. Among 11 test cases, the original configuration and the case of exchanging the swirlers of annular and central air inlets are the best choices in terms of combustion efficiency and stability. Measurements show the improvement of burner stability, 2–10%, due to inlet air preheating.

References

1.
Dennis
,
C. N.
,
Slabaugh
,
C. D.
,
Boxx
,
I. G.
,
Meier
,
W.
,
Lucht
,
R. P. J. C.
, and
Flame
,
C. A.
,
2016
, “
5 kHz Thermometry in a Swirl-Stabilized Gas Turbine Model Combustor Using Chirped Probe Pulse Femtosecond CARS. Part 1: Temporally Resolved Swirl-Flame Thermometry
,”
Combust. Flame
,
173
, pp.
441
453
. 10.1016/j.combustflame.2016.02.033
2.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W. J. C.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
. 10.1016/j.combustflame.2012.03.020
3.
Al-Malak
,
A.
,
Elshafei
,
M.
,
Habib
,
M. A.
, and
Al-Zaharnah
,
I.
,
2016
, “
Soft Analyzer for Monitoring NOx Emissions From a Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
031101
. 10.1115/1.4032617
4.
Lokini
,
P.
,
Roshan
,
D. K.
, and
Kushari
,
A.
,
2019
, “
Influence of Swirl and Primary Zone Airflow Rate on the Emissions and Performance of a Liquid-Fueled Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062009
. 10.1115/1.4042410
5.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2017
, “
An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032202
. https://doi.org/10.1115/1.4035023
6.
Liu
,
S.
,
Yin
,
H.
,
Xiong
,
Y.
, and
Xiao
,
X.
,
2017
, “
A Comparative Analysis of Single Nozzle and Multiple Nozzles Arrangements for Syngas Combustion in Heavy Duty Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022004
. https://doi.org/10.1115/1.4034232
7.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X. R.
,
Stricker
,
W.
, and
Aigner
,
M. J. C.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor: I. Flow Field, Structures, Temperature, and Species Distributions
,”
Combust. Flame
,
144
(
1–2
), pp.
205
224
. 10.1016/j.combustflame.2005.07.010
8.
Meier
,
W.
,
Duan
,
X.
, and
Weigand
,
P.
,
2005
, “
Reaction Zone Structures and Mixing Characteristics of Partially Premixed Swirling CH4/Air Flames in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
835
842
. 10.1016/j.proci.2004.08.065
9.
Duan
,
X.
,
Weigand
,
P.
,
Meier
,
W.
,
Keck
,
O.
,
Stricker
,
W.
,
Aigner
,
M.
, and
Lehmann
,
B.
,
2004
, “
Experimental Investigations and Laser Based Validation Measurements in a Gas Turbine Model Combustor
,”
Prog. Computat. Fluid Dyn.
,
4
(
3–5
), pp.
175
182
. 10.1504/PCFD.2004.004085
10.
Meier
,
W.
,
Duan
,
X. R.
, and
Weigand
,
P. J. C.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor: II. Turbulence–Chemistry Interactions
,”
Combust. Flame
,
144
(
1–2
), pp.
225
236
. 10.1016/j.combustflame.2005.07.009
11.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
90
(
3–4
), pp.
609
618
. 10.1007/s00340-007-2928-8
12.
Stöhr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2009
, “
Experimental Study of Unsteady Flame Structures of an Oscillating Swirl Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2925
2932
. 10.1016/j.proci.2008.05.086
13.
Boxx
,
I.
,
Blumenthal
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2009
, “
Investigation of a Gas Turbine Model Combustor by Means of High-Speed Laser Imaging
,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 5–8
, p.
644
.
14.
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C.
, and
Meier
,
W. J. C.
,
2010
, “
Temporally Resolved Planar Measurements of Transient Phenomena in a Partially Pre-Mixed Swirl Flame in a Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
8
), pp.
1510
1525
. 10.1016/j.combustflame.2009.12.015
15.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
. 10.1016/j.proci.2010.06.103
16.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X.
,
Giezendanner-Thoben
,
R.
, and
Meier
,
U. J. F.
,
2005
, “
Laser Diagnostic Study of the Mechanism of a Periodic Combustion Instability in a Gas Turbine Model Combustor
,”
Flow, Turbul. Combust.
,
75
(
1–4
), pp.
275
292
. 10.1007/s10494-005-8585-2
17.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W. J. C.
,
2010
, “
Flow–Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
. 10.1016/j.combustflame.2010.07.011
18.
Hadef
,
R.
, and
Lenze
,
B. J. C. E.
,
2008
, “
Effects of Co- and Counter-Swirl on the Droplet Characteristics in a Spray Flame
,”
Chem. Eng. Process.
,
47
(
12
), pp.
2209
2217
. 10.1016/j.cep.2007.11.017
19.
Kutne
,
P.
,
Kapadia
,
B. K.
,
Meier
,
W.
, and
Aigner
,
M.
,
2011
, “
Experimental Analysis of the Combustion Behaviour of Oxyfuel Flames in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3383
3390
. 10.1016/j.proci.2010.07.008
20.
Allison
,
P.
,
Driscoll
,
J.
, and
Ihme
,
M.
,
2012
, “
Acoustic Behavior of a Partially-Premixed Gas Turbine Model Combustor
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
, p.
504
.
21.
Allison
,
P. M.
,
Driscoll
,
J. F.
, and
Ihme
,
M.
,
2013
, “
Acoustic Characterization of a Partially-Premixed Gas Turbine Model Combustor: Syngas and Hydrocarbon Fuel Comparisons
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3145
3153
. 10.1016/j.proci.2012.06.157
22.
Mardani
,
A.
,
Rezapour-Rastaaghi
,
H.
, and
Fazlollahi-Ghomshi
,
A.
,
2020
, “
Liquid Petroleum Gas Flame in a Double-Swirl Gas Turbine Model Combustor: Lean Blow-Out, Pollutant, Preheating
,”
Therm. Sci.
, pp.
139
139
. 10.2298/TSCI190623139M
23.
Kraus
,
C.
,
Harth
,
S.
, and
Bockhorn
,
H.
,
2016
, “
Experimental Investigation of Combustion Instabilities in Lean Swirl-Stabilized Partially-Premixed Flames in Single- and Multiple-Burner Setup
,”
Int. J. Spray Combust. Dyn.
,
8
(
1
), pp.
4
26
. 10.1177/1756827715627064
24.
Arndt
,
C. M.
,
Stöhr
,
M.
,
Severin
,
M. J.
,
Dem
,
C.
, and
Meier
,
W.
,
2017
, “
Influence of Air Staging on the Dynamics of a Precessing Vortex Core in a Dual Swirl Gas Turbine Model Combustor
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
, p.
4683
.
25.
Mardani
,
A.
,
Asadi
,
B.
, and
Rezapour-Rastaagi
,
H.
,
2019
, “
Three Dimensional Numerical Investigation of Methane Partially Premixed Combustion in a Double Swirl Gas Turbine Combustor
,”
11th Mediterranean Combustion Symposium (MSC11)
,
Tenerife, Spain
,
June 16–20
, p. EG-21.
26.
Allison
,
P. M.
,
2013
, “
Experimental Characterization of Combustion Instabilities and Flow-Flame Dynamics in a Partially-Premixed Gas Turbine Model Combustor
,”
A dissertation for the degree of Doctor of Philosophy
,
The University of Michigan
.
You do not currently have access to this content.