Abstract

This study presents a comparative experimental approach to analyze flame temperature, emissions, and radiation behaviors of an oil furnace fueled with nano biodiesel blend fuel containing suspended energetic and non-energetic nanoparticles (NPs). Iron NPs were used as energetic nanoparticles, and alumina (Al2O3) was selected as non-energetic NPs. A dilute homogeneous mixture (500 ppm) was provided from each NPs in B20 blend fuel. The fuels were burned in an oil burner subsequently, and infrared radiation (IR) images of flame, profiles of flame temperature, luminous and total radiation and NOx and CO emissions were gauged and compared. Measurements showed that both NPs improve the evaporation rate of fuel droplets and displace the peak of flame temperature to the flame upstream region. Moreover, nano biodiesel blend fuel containing energetic iron NPs elevates flame temperature while the non-energetic alumina NPs reduce the peak of flame temperature. In addition, both NPs strengthen the nucleation and growth of intermediate soot particles. These fuels containing suspended particles also lead to an increase in the intermediate soot particles content of flame and flame emissivity. This increases IR, luminous, and total flame radiation. The improvement of average flame radiative flux for nano biodiesel blend fuel containing energetic iron NPs and non-energetic alumina NPs is as high as 25% and 10%, respectively. Also, using energetic iron NPs and non-energetic alumina NPs in B20 fuel reduces the NOx emission by 13% and 11%, respectively.

References

1.
Foroutan
,
R.
,
Mohammadi
,
R.
,
Razeghi
,
J.
, and
Ramavandi
,
B.
,
2021
, “
Biodiesel Production From Edible-Oils Using Algal Biochar/CaO/K2CO3 as Heterogeneous and Recyclable Catalyst
,”
Renewable Energy
,
168
, pp.
1207
1216
.
2.
Werther
,
J.
,
2009
, “
Sustainable and Energy-Efficient Utilization of Biomass by Co-combustion in Large-Scale Power Stations
,”
Environ. Eng. Manage.
,
19
(
3
), pp.
135
144
.
3.
Zhang
,
J.
,
Chen
,
G.
,
Shen
,
Y.
,
Li
,
B.
, and
Li
,
Q.
,
2021
, “
Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082304
.
4.
Selbmann
,
K.
, and
Ide
,
T.
,
2015
, “
Between Redeemer and Work of the Devil: The Brazilian Biofuel Discourse
,”
Energy Sustainable Dev.
,
29
, pp.
118
126
.
5.
Kochaphum
,
C.
,
Gheewala
,
S. H.
, and
Vinitnantharat
,
S.
,
2015
, “
Does Palm Biodiesel Driven Land Use Change Worsen Greenhouse gas Emissions?
,”
Energy Sustainable Dev.
,
29
(
18
), pp.
100
111
.
6.
Sharma
,
P.
,
2022
, “
Prediction-Optimization of the Effects of Di-tertbutyl Peroxide-Biodiesel Blends on Engine Performance and Emissions Using Multi-Objective Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072301
.
7.
Thushari
,
P. G. I.
, and
Babel
,
S.
,
2018
, “
Biodiesel Production From Waste Palmoil Using Palm Empty Fruit Bunch-Derived Novel Carbon-Acid Catalyst
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032204
.
8.
Debbarma
,
S.
, and
Misra
,
R. D.
,
2017
, “
Effects of Iron-Nanoparticles Blended Biodiesel on Performance and Emission Characteristics of Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042212
.
9.
Pastore
,
C.
,
Lopez
,
A.
,
Vincenzo
,
L.
, and
Mascolo
,
G.
,
2013
, “
Biodiesel From Dewatered-Wastewater Sludge: A Process for More Advantageous Production
,”
Chemosphere
,
92
(
6
), pp.
667
673
.
10.
Ong
,
H. C.
,
Mahlia
,
T. M. I.
,
Masjuki
,
H. H.
, and
Norhasyima
,
R. S.
,
2011
, “
Comparison of Palm Oil, Jathropa Curcas and Calophyllum Inophyllum for Biodiesel: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3501
3515
.
11.
Kalam
,
M. A.
, and
Masjuki
,
H. H.
,
2003
, “
Biodiesel From Palm Oil-An Analysis of Its Properties and Potential
,”
Biomass Bioenergy
,
23
(
6
), pp.
471
479
.
12.
Tan
,
K. T.
,
Lee
,
K. T.
,
Mohamed
,
A. R.
, and
Bhatia
,
S.
,
2009
, “
Palm Oil: Addressing Issues and Towards Sustainable Development
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
420
427
.
13.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
120801
.
14.
Aworanti
,
O. A.
,
Ajani
,
A. O.
,
Agarry
,
S. E.
,
Babatunde
,
K. A.
, and
Akinwunmi
,
O. D.
,
2019
, “
Effect of Process Variables on the Transesterification Process of Palm Oil Sludge to Biodiesel
,”
Biotechnol. J. Int.
,
23
(
2
), pp.
1
14
.
15.
Mofijur
,
M.
,
Yasir Arafat Siddiki
,
S. K.
,
Bengir Ahmed Shuvho
,
M. D.
,
Djavanroodi
,
F.
,
Fattah IM
,
R.
,
Ong
,
H. C.
,
Chowdhury
,
M. A.
, and
Mahlia
,
T. M. I.
,
2021
, “
Effect of Nanocatalysts on the Transesterification Reaction of First, Second and Third Generation Biodiesel Sources-A Mini-review
,”
Chemosphere
,
270
, p.
128642
.
16.
Pourhoseini
,
S. H.
,
Naghizadeh
,
N.
, and
Hoseinzadeh
,
H.
,
2018
, “
Effect of Silver-Water Nanofluid on Heat Transfer Performance of a Plate Heat Exchanger: An Experimental and Theoretical Study
,”
Powder Technol.
,
332
, pp.
279
286
.
17.
Song
,
J.
,
Wang
,
J.
, and
Boehman
,
A. L.
,
2006
, “
The Role of Fuel-Borne Catalyst in Diesel Particulate Oxidation Behavior
,”
Combust. Flame
,
146
(
1
), pp.
73
84
.
18.
Kannaiyan
,
K.
,
Anoop
,
K.
, and
Sadr
,
R.
,
2017
, “
Effect of Nanoparticles on Fuel Properties and Spray Performance of Aviation Turbine Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032201
.
19.
Wickham
,
D. T.
,
Cook
,
R.
,
De Voss
,
S.
,
Engel
,
J. R.
, and
Nabity
,
J.
,
2006
, “
Soluble Nano Catalysts for High Performance Fuels
,”
J. Russ. Laser Res.
,
27
(
6
), pp.
552
561
.
20.
Sabourin
,
J. L.
,
Dabbs
,
D. M.
,
Yetter
,
R. A.
,
Dryer
,
F. L.
, and
Aksay
,
I. A.
,
2009
, “
Functionalized Grapheme-Sheet Colloids for Enhanced Fuel/Propellant Combustion
,”
ACS Nano
,
3
(
12
), pp.
3945
3954
.
21.
Khan
,
S.
,
Dewang
,
Y.
,
Raghuwanshi
,
J.
,
Shrivastava
,
A.
, and
Sharma
,
V.
,
2020
, “
Nanoparticles as Fuel Additive for Improving Performance and Reducing Exhaust Emissions of Internal Combustion Engines
,”
Environ. Anal. Chem.
, pp.
1
23
.
22.
Mahalingam
,
S.
, and
Ganesan
,
S.
,
2020
, “
Effect of Nano-fuel Additive on Performance and Emission Characteristics of the Diesel Engine Using Biodiesel Blends With Diesel Fuel
,”
Ambient Energy
,
41
(
3
), pp.
316
321
.
23.
Kumar
,
S.
,
Dinesha
,
P.
, and
Bran
,
I.
,
2019
, “
Experimental Investigation of the Effects of Nanoparticles as an Additive in Diesel and Biodiesel Fuelled Engines: A Review
,”
Biofuels
,
10
(
5
), pp.
615
622
.
24.
Tomar
,
M.
, and
Kumar
,
N.
,
2020
, “
Influence of Nanoadditives on the Performance and Emission Characteristics of a CI Engine Fuelled With Diesel, Biodiesel, and Blends: A Review
,”
Energy Sources, Part A
,
42
(
23
), pp.
2944
2961
.
25.
Shams
,
Z.
, and
Moghiman
,
M.
,
2017
, “
An Experimental Investigation of Ignition Probability of Diesel Fuel Droplets With Metal-Oxide Nanoparticles
,”
Thermochim. Acta
,
657
(
10
), pp.
79
85
.
26.
Tyagi
,
H.
,
Phelan
,
P. E.
,
Prasher
,
R.
,
Peck
,
R.
,
Lee
,
T.
,
Pacheco
,
J. R.
, and
Arentzen
,
P.
,
2008
, “
Increased Hot-Plate Ignition Probability for Nanoparticle Laden Diesel Fuel
,”
Nano Lett.
,
8
(
5
), pp.
1410
1416
.
27.
Singh
,
G.
,
Esmaeilpour
,
M.
, and
Ratner
,
A.
,
2020
, “
Effect of Carbon-Based Nanoparticles on Ignition, Combustion and Flame Characteristics of Crude-Oil Droplets
,”
Energy
,
197
, pp.
1
15
.
28.
Gan
,
Y.
,
Lim
,
Y. S.
, and
Qiao
,
L.
,
2012
, “
Combustion of Nanofluid Fuels With the Addition of Boron and Iron Particles at Dilute and Dense Concentrations
,”
Combust. Flame
,
159
(
4
), pp.
1732
1740
.
29.
Gumus
,
S.
,
Ozcan
,
H.
,
Ozbey
,
M.
, and
Topaloglu
,
B.
,
2016
, “
Aluminum-Oxide and Copper-Oxide Nanodiesel Fuel Properties and Usage in a CI Engine
,”
Fuel
,
163
, pp.
80
87
.
30.
Anbarasu
,
A.
,
Karthikeyan
,
A.
, and
Balaji
,
M.
,
2016
, “
Performance and Emission Characteristics of Diesel Engine Using Alumina Nanoparticle Blended Biodiesel Emulsion Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022203
.
31.
Cheng
,
X.
,
Zhang
,
M.
,
Sun
,
P.
,
Wang
,
L.
,
Wang
,
Z.
, and
Ma
,
C.
,
2016
, “
Nitrogen Oxides Reduction by Carbon Monoxide Over Semi-coke Supported Catalysts in a Simulated Rotary Reactor: Reaction Performance Under Dry Conditions
,”
Green Chem.
,
18
(
19
), pp.
5305
5324
.
You do not currently have access to this content.