Abstract

The fluid–solid interaction force shows significant influence on liquid flow at nanoscale. Vast experimental observations in recent literatures have shown that Darcy's law cannot be applied to nanoporous media. In this study, the slip length and effective viscosity are adapted to characterize the nanoscale effect. First, the nanoscale effect is investigated in nanotubes through computational fluid dynamic (CFD) modeling analysis. Slip boundary condition has been studied as an important discrepancy between macroscopic flow and nanoscale liquid flow. The effect of viscosity change becomes more notable with the slip length increasing. Then, the flow equation for pore network modeling is developed to capture nanoscale effect. The results show that the apparent permeability of nanoscale systems is significantly underestimated when slip effect is neglected. The size of the pore throat determines whether the slip effect needs to be considered, and critical diameter of neglecting the slip effect for circular throat is 79.17 Ls. It is necessary to take the variation of effective viscosity into account under slip boundary condition. With the pore throat size decreasing, the nanoscale effect increases. The nanoscale effect is more sensitive to pore throat size under hydrophobic conditions than hydrophilic conditions.

References

1.
Liu
,
J.
,
Yao
,
Y.
,
Liu
,
D.
,
Cai
,
Y.
, and
Cai
,
J.
,
2018
, “
Comparison of Pore Fractal Characteristics Between Marine and Continental Shales
,”
Fractals
,
26
(
2
), p.
1840016
. 10.1142/S0218348X18400169
2.
Song
,
W.
,
Yao
,
J.
,
Ma
,
J.
,
Li
,
A.
,
Li
,
Y.
,
Sun
,
H.
, and
Zhang
,
L.
,
2018
, “
Grand Canonical Monte Carlo Simulations of Pore Structure Influence on Methane Adsorption in Micro-Porous Carbons With Applications to Coal and Shale Systems
,”
Fuel
,
215
, pp.
196
203
. 10.1016/j.fuel.2017.11.016
3.
Zhao
,
P.
,
Cai
,
J.
,
Huang
,
Z.
,
Ostadhassan
,
M.
, and
Ran
,
F.
,
2018
, “
Estimating Permeability of Shale-Gas Reservoirs From Porosity and Rock Compositions
,”
Geophysics
,
83
(
5
), pp.
283
294
. 10.1190/geo2018-0048.1
4.
Zha
,
W.
,
Li
,
X.
,
Li
,
D.
,
Xing
,
Y.
,
He
,
L.
, and
Tan
,
J.
,
2021
, “
Shale Digital Core Image Generation Based on Generative Adversarial Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033003
. 10.1115/1.4048052
5.
Javadpour
,
F.
,
Fisher
,
D.
, and
Unsworth
,
M.
,
2007
, “
Nanoscale Gas Flow in Shale Gas Sediments
,”
J. Can. Pet. Technol.
,
46
(
10
), pp.
56
61
. 10.2118/07-10-06
6.
Ambrose
,
R. J.
,
Hartman
,
R. C.
,
Diaz-Campos
,
M.
,
Akkutlu
,
I. Y.
, and
Sondergeld
,
C. H.
,
2012
, “
Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
,”
SPE J.
,
17
(
1
), pp.
219
229
. 10.2118/131772-PA
7.
Javadpour
,
F.
,
2009
, “
Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone)
,”
J. Can. Pet. Technol.
,
48
(
8
), pp.
16
21
. 10.2118/09-08-16-DA
8.
Monteiro
,
P. J.
,
Rycroft
,
C. H.
, and
Barenblatt
,
G. I.
,
2012
, “
A Mathematical Model of Fluid and Gas Flow in Nanoporous Media
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
50
), pp.
20309
20313
. 10.1073/pnas.1219009109
9.
Yang
,
Q.
,
Yao
,
J.
,
Huang
,
Z.
,
Zhu
,
G.
,
Liu
,
L.
, and
Song
,
W.
,
2020
, “
Pore-Scale Investigation of Petro-Physical Fluid Behaviours Based on Multiphase SPH Method
,”
J. Pet. Sci. Eng.
,
192
, p.
107238
. 10.1016/j.petrol.2020.107238
10.
Falk
,
K.
,
Coasne
,
B.
,
Pellenq
,
R.
,
Ulm
,
F. J.
, and
Bocquet
,
L.
,
2015
, “
Subcontinuum Mass Transport of Condensed Hydrocarbons in Nanoporous Media
,”
Nat. Commun.
,
6
(
1
), p.
6949
. 10.1038/ncomms7949
11.
Qi
,
Y.
,
Ju
,
Y.
,
Jia
,
T.
,
Zhu
,
H.
, and
Cai
,
J.
,
2017
, “
Nanoporous Structure and Gas Occurrence of Organic-Rich Shales
,”
J. Nanosci. Nanotechnol.
,
17
(
9
), pp.
6942
6950
. 10.1166/jnn.2017.14466
12.
Yang
,
Y.
,
Yang
,
H.
,
Tao
,
L.
,
Yao
,
J.
,
Wang
,
W.
,
Zhang
,
K.
, and
Luquot
,
L.
, “
Microscopic Determination of Remaining Oil Distribution in Sandstones With Different Permeability Scales Using CT-Scanning
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092903
. 10.1115/1.4043131
13.
Javadpour
,
F.
,
McClure
,
M.
, and
Naraghi
,
M.
,
2015
, “
Slip-Corrected Liquid Permeability and Its Effect on Hydraulic Fracturing and Fluid Loss in Shale
,”
Fuel
,
160
, pp.
549
559
. 10.1016/j.fuel.2015.08.017
14.
Zhao
,
J.
,
Kang
,
Q.
,
Yao
,
J.
,
Zhang
,
L.
,
Li
,
Z.
,
Yang
,
Y.
, and
Sun
,
H.
,
2018
, “
Lattice Boltzmann Simulation of Liquid Flow in Nanoporous Media
,”
Int. J. Heat Mass Transf.
,
125
, pp.
1131
1143
. 10.1016/j.ijheatmasstransfer.2018.04.123
15.
Zhang
,
L.
,
Yao
,
J.
,
Zhao
,
J.
,
Li
,
A.
,
Sun
,
H.
,
Wan
,
Y.
, and
Su
,
Y.
,
2016
, “
The Influence of Wettability and Shut-In Time on Oil Recovery Through Microscale Simulation Based on an Ideal Model
,”
J. Nat. Gas Sci. Eng.
,
48
, pp.
178
185
. 10.1016/j.jngse.2016.10.032
16.
Hannon
,
L.
,
Lie
,
G. C.
, and
Clementi
,
E.
,
1986
, “
Molecular Dynamics Simulation Simulation of Channel Flow
,”
Phys. Lett. A
,
119
(
4
), pp.
174
177
. 10.1016/0375-9601(86)90440-8
17.
Koplik
,
J.
,
Banavar
,
J. R.
, and
Willemsen
,
J. F.
,
1988
, “
Molecular Dynamics of Poiseuille Flow and Moving Contact Lines
,”
Phys. Rev. Lett.
,
60
(
13
), pp.
1282
1285
. 10.1103/PhysRevLett.60.1282
18.
Koplik
,
J.
,
Banavar
,
J. R.
, and
Willemsen
,
J. F.
,
1989
, “
Molecular Dynamics of Fluid Flow at Solid Surfaces
,”
Phys. Fluids
,
1
(
5
), pp.
781
794
. 10.1063/1.857376
19.
Cui
,
J.
,
Sang
,
Q.
,
Li
,
Y.
,
Yin
,
C.
,
Li
,
Y.
, and
Dong
,
M.
,
2017
, “
Liquid Permeability of Organic Nanopores in Shale: Calculation and Analysis
,”
Fuel
,
202
, pp.
426
434
. 10.1016/j.fuel.2017.04.057
20.
Ortizyoung
,
D.
,
Chiu
,
H. C.
,
Kim
,
S.
,
Voïtchovsky
,
K.
, and
Riedo
,
E.
,
2013
, “
The Interplay Between Apparent Viscosity and Wettability in Nanoconfined Water
,”
Nat. Commun.
,
4
(
9
), p.
2482
. 10.1038/ncomms3482
21.
Raviv
,
U.
,
Laurat
,
P.
, and
Klein
,
J.
,
2001
, “
Fluidity of Water Confined to Subnanometre Films
,”
Nature
,
413
(
6851
), pp.
51
54
. 10.1038/35092523
22.
Neek-Amal
,
M.
,
Peeters
,
F. M.
,
Grigorieva
,
I. V.
, and
Geim
,
A. K.
,
2016
, “
Commensurability Effects in Viscosity of Nanoconfined Water
,”
ACS Nano
,
10
(
3
), pp.
3685
3692
. 10.1021/acsnano.6b00187
23.
Hoang
,
H.
, and
Galliero
,
G.
,
2012
, “
Local Viscosity of a Fluid Confined in a Narrow Pore
,”
Phys. Rev. E
,
86
(
2
), p.
021202
. 10.1103/PhysRevE.86.021202
24.
Wang
,
S.
,
Javadpour
,
F.
, and
Feng
,
Q.
,
2016
, “
Fast Mass Transport of Oil and Supercritical Carbon Dioxide Through Organic Nanopores in Shale
,”
Fuel
,
181
, pp.
741
758
. 10.1016/j.fuel.2016.05.057
25.
Wang
,
S.
,
Javadpour
,
F.
, and
Feng
,
Q.
,
2016
, “
Molecular Dynamics Simulations of Oil Transport Through Inorganic Nanopores in Shale
,”
Fuel
,
171
, pp.
74
86
. 10.1016/j.fuel.2015.12.071
26.
Zhang
,
Q.
,
Su
,
Y.
,
Wang
,
W.
,
Lu
,
M.
, and
Sheng
,
G.
,
2017
, “
Apparent Permeability for Liquid Transport in Nanopores of Shale Reservoirs: Coupling Flow Enhancement and Near Wall Flow
,”
Int. J. Heat Mass Transf.
,
115
, pp.
224
234
. 10.1016/j.ijheatmasstransfer.2017.08.024
27.
Liu
,
P.
,
Li
,
J.
,
Sun
,
S.
,
Yao
,
J.
, and
Zhang
,
K.
,
2021
, “
Numerical Investigation of Carbonate Acidizing With Gelled Acid Using a Coupled Thermal–Hydrologic–Chemical Model
,”
Int. J. Therm. Sci.
,
160
, p.
106700
. 10.1016/j.ijthermalsci.2020.106700
28.
Ma
,
J.
,
Sanchez
,
J. P.
,
Wu
,
K.
,
Couples
,
G. D.
, and
Jiang
,
Z.
,
2014
, “
A Pore Network Model for Simulating Non-Ideal Gas Flow in Micro-and Nano-Porous Materials
,”
Fuel
,
116
, pp.
498
508
. 10.1016/j.fuel.2013.08.041
29.
Yang
,
Y.
,
Yao
,
J.
,
Wang
,
C.
,
Gao
,
Y.
,
Zhang
,
Q.
,
An
,
S.
, and
Song
,
W.
,
2015
, “
New Pore Space Characterization Method of Shale Matrix Formation by Considering Organic and Inorganic Pores
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
496
503
. 10.1016/j.jngse.2015.08.017
30.
Afsharpoor
,
A.
, and
Javadpour
,
F.
,
2016
, “
Liquid Slip Flow in a Network of Shale Noncircular Nanopores
,”
Fuel
,
180
, pp.
580
590
. 10.1016/j.fuel.2016.04.078
31.
Huang
,
D. M.
,
Sendner
,
C.
,
Horinek
,
D.
,
Netz
,
R. R.
, and
Bocquet
,
L.
,
2008
, “
Water Slippage Versus Contact Angle: A Quasiuniversal Relationship
,”
Phys. Rev. Lett.
,
101
(
22
), p.
226101
. 10.1103/PhysRevLett.101.226101
32.
Wu
,
K.
,
Chen
,
Z.
,
Li
,
J.
,
Li
,
X.
,
Xu
,
J.
, and
Dong
,
X.
,
2017
, “
Wettability Effect on Nanoconfined Water Flow
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
13
), pp.
3358
3363
. 10.1073/pnas.1612608114
33.
Thomas
,
J. A.
, and
McGaughey
,
A. J.
,
2008
, “
Reassessing Fast Water Transport Through Carbon Nanotubes
,”
Nano Lett.
,
8
(
9
), pp.
2788
2793
. 10.1021/nl8013617
34.
Liu
,
Y.
,
Wang
,
Q.
,
Wu
,
T.
, and
Zhang
,
L.
,
2005
, “
Fluid Structure and Transport Properties of Water Inside Carbon Nanotubes
,”
J. Chem. Phys.
,
123
(
23
), p.
234701
. 10.1063/1.2131070
35.
Guo
,
Y.
,
Zhang
,
L.
,
Zhu
,
G.
,
Yao
,
J.
,
Sun
,
H.
,
Song
,
W.
,
Yang
,
Y.
, and
Zhao
,
J.
,
2019
, “
A Pore-Scale Investigation of Residual oil Distributions and Enhanced Oil Recovery Methods
,”
Energies
,
12
(
19
), p.
3732
. 10.3390/en12193732
36.
Blunt
,
M. J.
,
2001
, “
Flow in Porous Media-Pore-Network Models and Multiphase Flow
,”
Curr. Opin. Colloid Interface Sci.
,
6
(
3
), pp.
197
207
. 10.1016/S1359-0294(01)00084-X
37.
Zhu
,
G.
,
Kou
,
J.
,
Yao
,
B.
,
Wu
,
Y.
,
Yao
,
J.
, and
Sun
,
S.
,
2019
, “
Thermodynamically Consistent Modelling of Two-Phase Flows With Moving Contact Line and Soluble Surfactants
,”
J. Fluid Mech.
,
873
, pp.
327
359
. 10.1017/jfm.2019.664
38.
Zhang
,
W.
,
Yao
,
J.
,
Gao
,
Y.
,
Zhang
,
Q.
, and
Sun
,
H.
,
2015
, “
Analysis of Electrokinetic Coupling of Fluid Flow in Porous Media Using a 3-D Pore Network
,”
J. Pet. Sci. Eng.
,
134
, pp.
150
157
. 10.1016/j.petrol.2015.04.013
39.
Valvatne
,
P. H.
, and
Blunt
,
M. J.
,
2004
, “
Predictive Pore-Scale Modeling of Two-Phase Flow in Mixed Wet Media
,”
Water Resour. Res.
,
40
(
7
), p.
W07406
. 10.1029/2003WR002627
40.
Zhang
,
L.
,
Kang
,
Q.
,
Yao
,
J.
,
Gao
,
Y.
,
Sun
,
Z.
,
Liu
,
H.
, and
Valocchi
,
A. J.
,
2015
, “
Pore Scale Simulation of Liquid and Gas Two-Phase Flow Based on Digital Core Technology
,”
Sci. China-Technol. Sci.
,
58
(
8
), pp.
1375
1384
. 10.1007/s11431-015-5842-z
You do not currently have access to this content.