Abstract

In this work, a methodology is proposed to standardize turbochargers testing based on measuring the maps twice: in close to adiabatic and in diathermal conditions. Along the paper, it is discussed with special detail the impact of the procedure followed to achieve said quasi-adiabatic conditions in both the energy balance of the turbocharger and the testing complexity. As a conclusion, the paper proposes a methodology which combines quasi-adiabatic tests (cold and hot gas flow) with diathermal tests (hot gas flow) in order to extract from a turbocharger gas-stand all information needed by engine designers interested in controlling or one-dimensional-modeling the internal combustion engine (ICE). The methodology is completed with a guide for calibrating said control-oriented turbocharger models in order to separate aerodynamic efficiency (adiabatic) from heat transfer (HT) losses and from friction losses in the analysis of the turbocharger performance. The outsourced calibration of the turbocharger model allows avoiding uncertainties in the global ICE model calibration, what is very interesting for turbochargers benchmarking at early ICE-turbo matching stages or for global system analysis at early control design stages.

References

1.
Zeppei
,
D.
,
Koch
,
S.
, and
Rohi
,
A.
,
2016
, “
Ball Bearing Technology for Passenger Car Turbochargers
,”
Motortechnische Zeitschrift—Springer
,
77
, pp.
26
31
.
2.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Varnier
,
O.
,
2010
, “
Impact of Two-Stage Turbocharging Architectures on Pumping Losses of Automotive Engines Based on an Analytical Model
,”
Energy Convers. Manage.
,
51
(
10
), pp.
1958
1969
. 10.1016/j.enconman.2010.02.028
3.
Avola
,
C.
,
Copeland
,
C.
,
Duda
,
T.
,
Burke
,
R.
,
Akehurst
,
S.
, and
Brace
,
C.
,
2015
, “
Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems
,”
SAE Technical Paper
. 10.4271/2015-24-2523
4.
Mingyang
,
Y.
,
Ricardo
,
M. b.
,
Kangyao
,
D.
,
Yangjun
,
Z.
, and
Xinqian
,
Z.
,
2016
, “
Unsteady Influence of Self Recirculation Casing Treatment (SRCT) on High Pressure Ratio Centrifugal Compressor
,”
Int. J. Heat Fluid Flow
,
58
, pp.
19
29
. 10.1016/j.ijheatfluidflow.2015.12.004
5.
Zheng
,
X.
,
Zhang
,
Y.
,
Yang
,
M.
,
Bamba
,
T.
, and
Tamaki
,
H.
,
2012
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetrical Flow Control—Part II: Nonaxisymmetrical Self-Recirculation Casing Treatment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021007
. 10.1115/1.4006637
6.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Martinez-Botas
,
R. F.
, and
Costall
,
A. W.
,
2012
, “
Engine Turbocharger Performance Prediction: One-Dimensional Modeling of a Twin Entry Turbine
,”
Energy Convers. Manage.
,
57
, pp.
68
78
. 10.1016/j.enconman.2011.12.001
7.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2009
,
Diesel Engine Transient Operation
,
Springer
,
New York
.
8.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Dombrovsky
,
A.
, and
Smith
,
L.
,
2015
, “
Turbocharger Heat Transfer and Mechanical Losses Influence in Predicting Engines Performance by Using One-Dimensional Simulation Codes
,”
Energy
,
86
, pp.
204
218
. 10.1016/j.energy.2015.03.130
9.
Serrano
,
J.
,
Olmeda
,
P.
,
Arnau
,
F.
,
Reyes-Belmonte
,
M.
, and
Lefebvre
,
A.
,
2013
, “
Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications
,”
SAE Int. J. Engines
,
6
(
2
), pp.
716
728
. 10.4271/2013-01-0576
10.
Marelli
,
S.
,
Marmorato
,
G.
,
Capobianco
,
M.
, and
Rinaldi
,
A.
,
2015
, “
Heat Transfer Effects on Performance Map of a Turbocharger Compressor for Automotive Application
,”
SAE Technical Paper
. 10.4271/2015-01-1287
11.
Payri
,
F.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Dombrovsky
,
A.
, and
Smith
,
L.
,
2014
, “
External Heat Losses in Small Turbochargers: Model and Experiments
,”
Energy
,
71
, pp.
534
546
. 10.1016/j.energy.2014.04.096
12.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Reyes-Belmonte
,
M. A.
, and
Tartoussi
,
H.
,
2015
, “
A Study on the Internal Convection in Small Turbochargers. Proposal of Heat Transfer Convective Coefficients
,”
Appl. Therm. Eng.
,
89
, pp.
587
599
. 10.1016/j.applthermaleng.2015.06.053
13.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Tiseira
,
A.
,
García-Cuevas
,
L. M.
, and
Lefebvre
,
A.
,
2013
, “
Theoretical and Experimental Study of Mechanical Losses in Automotive Turbochargers
,”
Energy
,
55
, pp.
888
898
. 10.1016/j.energy.2013.04.042
14.
Society of Automotive Engineers
,
1995
, Supercharger Testing Standard, SAE Vehicle Standard
,
pp.
1
9
.
15.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
, and
Samala
,
V.
,
2019
, “
A Holistic Methodology to Correct Heat Transfer and Bearing Friction Losses From Hot Turbocharger Maps in Order to Obtain Adiabatic Efficiency of the Turbomachinery
,”
Int. J. Engine Res.
,
21
(
8
), pp.
1314
1335
. 10.1177/1468087419834194
16.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
García-Cuevas
,
L. M.
,
Dombrovsky
,
A.
, and
Tartoussi
,
H.
,
2016
, “
Development and Validation of a Radial Turbine Efficiency and Mass Flow Model at Design and Off-Design Conditions
,”
Energy Convers. Manage.
,
128
, pp.
281
293
. 10.1016/j.enconman.2016.09.032
17.
Payri
,
F.
,
Serrano
,
J. R.
,
Fajardo
,
P.
,
Reyes-Belmonte
,
M. A.
, and
Gozalbo-Belles
,
R.
,
2012
, “
A Physically Based Methodology to Extrapolate Performance Maps of Radial Turbines
,”
Energy Convers. Manage.
,
55
, pp.
149
163
. 10.1016/j.enconman.2011.11.003
You do not currently have access to this content.