Abstract

The aerodynamic shapes of the blades are still of high importance and various aerodynamic designs have been developed in order to increase the amount of energy production. In this study, a swept horizontal axis wind turbine blade has been optimized to increase the aerodynamic efficiency using the computational fluid dynamics method. To illustrate the technique, a wind turbine with a rotor diameter of 0.94 m has been used as the baseline turbine, and the most appropriate swept blade design parameters, namely the sweep start-up section, tip displacement, and mode of the sweep have been investigated to obtain the maximum power coefficient at the design tip speed ratio. At this stage, a new equation that allows all three swept blade design parameters to be changed independently has been used to design swept blades, and the response surface method has been used to find out the optimum swept blade parameters. According to the results obtained, a significant increase of 4.28% in the power coefficient was achieved at the design tip speed ratio with the newly designed optimum swept wind turbine blade. Finally, baseline and optimum swept blades have been compared in terms of power coefficients at different tip speed ratios, force distributions, pressure distributions, and tip vortices.

References

1.
Abate
,
G.
,
Mavris
,
D. N.
, and
Sankar
,
L. N.
,
2019
, “
Performance Effects of Leading Edge Tubercles on the NREL Phase vi Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051206
.
2.
Celik
,
Y.
,
Ma
,
L.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2020
, “
Aerodynamic Investigation of the Start-up Process of H-Type Vertical Axis Wind Turbines Using CFD
,”
J. Wind Eng. Ind. Aerodyn.
,
204
, p.
104252
.
3.
Elsakka
,
M. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Effects of Turbulence Modelling on the Predictions of the Pressure Distribution Around the Wing of a Small Scale Vertical Axis Wind Turbine
,”
7th European Conference on Computational Fluid Dynamics (ECFD 7)
,
Glasgow, UK
,
June 11–15
.
4.
Ighodaro
,
O.
, and
Akhihiero
,
D.
,
2021
, “
Modeling and Performance Analysis of a Small Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031301
.
5.
Abdelsalam
,
A. M.
,
El-Askary
,
W. A.
,
Kotb
,
M. A.
, and
Sakr
,
I. M.
,
2021
, “
Computational Analysis of an Optimized Curved-Bladed Small-Scale Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061302
.
6.
Khalafallah
,
M.
,
Ahmed
,
A.
, and
Emam
,
M.
,
2017
, “
CFD Study of Some Factors Affecting Performance of HAWT with Swept Blades
,”
Int. J. Sustainable Energy
,
36
(
5
), pp.
489
501
.
7.
Khalafallah
,
M. G.
,
Ahmed
,
A. M.
, and
Emam
,
M. K.
,
2019
, “
The Effect of Using Winglets to Enhance the Performance of Swept Blades of a Horizontal Axis Wind Turbine
,”
Adv. Mech. Eng.
,
11
(
9
), p.
1687814019878312
.
8.
Sessarego
,
M.
,
Feng
,
J.
,
Ramos-García
,
N.
, and
Horcas
,
S. G.
,
2020
, “
Design Optimization of a Curved Wind Turbine Blade Using Neural Networks and an Aero-Elastic Vortex Method Under Turbulent Inflow
,”
Renewable Energy
,
146
, pp.
1524
1535
.
9.
Iswahyudi
,
S.
, and
Wibowo
,
S. B.
,
2020
, “
Effect of Blade tip Shapes on the Performance of a Small HAWT: An Investigation in a Wind Tunnel
,”
Case Stud. Therm. Eng.
,
19
, p.
100634
.
10.
Ashwill
,
T. D.
,
2010
, “
Sweep-Twist Adaptive Rotor Blade: Final Project Report
,”
Sandia National Laboratories
.
11.
Amano
,
R.
,
Avdeev
,
I.
,
Malloy
,
R.
, and
Shams
,
M. Z.
,
2013
, “
Power, Structural and Noise Performance Tests on Different Wind Turbine Rotor Blade Designs
,”
Int. J. Sustainable Energy
,
32
(
2
), pp.
78
95
.
12.
Boulamatsis
,
A. M.
,
Barlas
,
T. K.
, and
Stapountzis
,
H.
,
2019
, “
Active Control of Wind Turbines Through Varying Blade tip Sweep
,”
Renewable Energy
,
131
, pp.
25
36
.
13.
Chattot
,
J. J.
,
2009
, “
Effects of Blade Tip Modifications on Wind Turbine Performance Using Vortex Model
,”
Comput. Fluids
,
38
(
7
), pp.
1405
1410
.
14.
Chen
,
J.
,
Shen
,
X.
,
Zhu
,
X.
, and
Du
,
Z.
,
2019
, “
A Study on the Capability of Backward Swept Blades to Mitigate Loads of Wind Turbines in Shear Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
081201
.
15.
Hansen
,
M.
,
2011
, “
Aeroelastic Properties of Backward Swept Blades
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
, Vol.
260
.
16.
Verelst
,
D. R. S.
, and
Larsen
,
T. J.
,
2010
, “
Load Consequences When Sweeping Blades-A Case Study of a 5 MW Pitch Controlled Wind Turbine
,” Risø-R-1724,
Roskilde: Riso National Laboratory
.
17.
Kaya
,
M. N.
,
Kose
,
F.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Aerodynamic Performance of a Horizontal Axis Wind Turbine with Forward and Backward Swept Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
176
, pp.
166
173
.
18.
Demirel
,
G.
,
Acar
,
E.
,
Celebioglu
,
K.
, and
Aradag
,
S.
,
2017
, “
CFD-Driven Surrogate-Based Multi-Objective Shape Optimization of an Elbow Type Draft Tube
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17601
17610
.
19.
Amano
,
R.
, and
Malloy
,
R. J.
,
2008
, “
Aerodynamic Comparison of Straight Edge and Swept Edge Wind Turbine Blade
,”
ASME 2008 International Mechanical Engineering Congress and Exposition
, pp.
193
197
.
20.
ANSYS
,
2016
, “
DesignXplorer User's Guide
,”
Canonsburg, PA.
21.
Ostovan
,
Y.
, and
Uzol
,
O.
,
2016
, “
Experimental Study on the Effects of Winglets on the Performance of Two Interacting Horizontal Axis Model Wind Turbines
,”
J. Phys. Conf. Ser.
,
753
(
2
), p.
022015
.
22.
Ostovan
,
Y.
,
2017
, “
Winglets for Wind Turbines: an Experimental Study on Aerodynamic Performance and tip Vortex Behavior, Doctoral Dissertation
,” Ph. D., thesis,
Middle East Technical University
,
Turkey
.
23.
Kleijnen
,
J. P.
,
1975
, “
A Comment on Blanning's “Metamodel for Sensitivity Analysis: the Regression Metamodel in Simulation
,”
Interfaces
,
5
(
3
), pp.
21
23
.
24.
Friedman
,
L. W.
,
2012
,
The Simulation Metamodel
,
Springer Science and Business Media
.
25.
Laurenceau
,
J.
, and
Sagaut
,
P.
,
2008
, “
Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging
,”
AIAA J.
,
46
(
2
), pp.
498
507
.
26.
Abdelhamed
,
A. S.
,
Yassen
,
Y. E. S.
, and
ElSakka
,
M. M.
,
2015
, “
Design Optimization of Three Dimensional Geometry of Wind Tunnel Contraction
,”
Ain Shams Eng. J.
,
6
(
1
), pp.
281
288
.
27.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
, pp.
23
61
.
28.
Li
,
J. Y.
,
Li
,
R.
,
Gao
,
Y.
, and
Huang
,
J.
,
2010
, “
Aerodynamic Optimization of Wind Turbine Airfoils Using Response Surface Techniques
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
224
(
6
), pp.
827
838
.
29.
Anjum
,
M. F.
,
Tasadduq
,
I.
, and
Al-Sultan
,
K.
,
1997
, “
Response Surface Methodology: A Neural Network Approach
,”
Eur. J. Oper. Res.
,
101
(
1
), pp.
65
73
.
30.
Sairam
,
K.
, and
Turner
,
M. G.
,
2014
, “
The Influence of Radial Area Variation on Wind Turbines to the Axial Induction Factor
,”
Energy Power Eng.
,
6
(
11
), pp.
401
418
.
31.
Kaya
,
M. N.
,
Kok
,
A. R.
, and
Kurt
,
H.
,
2021
, “
Comparison of Aerodynamic Performances of Various Airfoils From Different Airfoil Families Using CFD
,”
Wind. Struct.
,
32
(
3
), pp.
239
248
.
32.
Elfarra
,
M. A.
,
2011
, “
Horizontal Axis Wind Turbine Rotor Blade: Winglet and Twist Aerodynamic Design and Optimization Using CFD
,” Ph.D., thesis,
Middle East Technical University
.
33.
Corsini
,
A.
,
Castorrini
,
A.
,
Morei
,
E.
,
Rispoli
,
F.
,
Sciulli
,
F.
, and
Venturini
,
P.
,
2015
, “
Modeling of Rain Drop Erosion in a Multi-MW Wind Turbine
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers
,
Montreal, Quebec, Canada
,
June 15–19
.
34.
Ebrahimi
,
A.
, and
Mardani
,
R.
,
2017
, “
Tip-Vortex Noise Reduction of a Wind Turbine Using a Winglet
,”
J. Energy Eng.
,
144
(
1
), p.
04017076
.
35.
ANSYS
,
2016
, “
Fluent Theorgy Guide 17.2
,”
Canonsburg, PA.
36.
Sørensen
,
N. N.
,
Michelsen
,
J. A.
, and
Schreck
,
S.
,
2002
, “
Navier–Stokes Predictions of the NREL Phase VI Rotor in the NASA Ames 80-by-120 Wind Tunnel
,” AIAA-2002-0031.
You do not currently have access to this content.