Abstract

Organic Rankine cycle (ORC)-based waste heat recovery (WHR) systems are simple, flexible, economical, and environment-friendly. Many working fluids and cycle configurations are available for WHR systems, and the diversity of working fluid properties complicates the synergistic integration of the efficient heat exchange in the evaporator and net output work. Unique guidelines to select a proper working fluid, cycle configuration and optimum operating parameters are not readily available. In the present study, a simple target-temperature-line approach is introduced to get the optimum operating parameters for the subcritical ORC system. The target-line is the locus of temperatures satisfying the pinch-point temperature difference along the length of the heat exchanger. Employing the approach, study is carried out with 38 pre-selected working fluids to get the optimum operating parameters and suitable fluid for heat source temperatures ranging from 100 °C to 300 °C. Results obtained are analyzed to get cross-correlations between key operating and performance parameters using a heat-map diagram. At the optimum condition, optimal working fluid’s critical temperature and pressure, evaporator saturation temperature, effectivenesses of the heat exchange in the evaporator, cycle, and overall WHR system exhibit strong linear correlations with the heat source temperature.

References

1.
Woodland
,
B. J.
,
Ziviani
,
D.
,
Braun
,
J. E.
, and
Groll
,
E. A.
,
2020
, “
Considerations on Alternative Organic Rankine Cycle Congurations for Low-Grade Waste Heat Recovery
,”
Energy
,
193
, p.
116810
. 10.1016/j.energy.2019.116810
2.
Bendig
,
M.
,
Maréchal
,
F.
, and
Favrat
,
D.
,
2013
, “
Defining “Waste Heat” for Industrial Processes
,”
Appl. Therm. Eng.
,
61
(
1
), pp.
134
142
. 10.1016/j.applthermaleng.2013.03.020
3.
Dumont
,
O.
,
Dickes
,
R.
,
Rosa
,
M. D.
,
Douglas
,
R.
, and
Lemort
,
V.
,
2018
, “
Technical and Economic Optimization of Subcritical, Wet Expansion and Transcritical Organic Rankine Cycle (ORC) Systems Coupled With a Biogas Power Plant
,”
Energy Convers. Manage.
,
157
, pp.
294
306
. 10.1016/j.enconman.2017.12.022
4.
Li
,
J.
,
Ge
,
Z.
,
Duan
,
Y.
, and
Yang
,
Z.
,
2019
, “
Design and Performance Analyses for a Novel Organic Rankine Cycle With Supercritical–Subcritical Heat Absorption Process Coupling
,”
Appl. Energy
,
235
, pp.
1400
1414
. 10.1016/j.apenergy.2018.11.062
5.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
3059
3067
. 10.1016/j.rser.2010.07.006
6.
Kim
,
Y. M.
,
Shin
,
D. G.
,
Kim
,
C. G.
, and
Cho
,
G. B.
,
2016
, “
Single-Loop Organic Rankine Cycles for Engine Waste Heat Recovery Using Both Low- and High-Temperature Heat Sources
,”
Energy
,
96
, pp.
482
494
. 10.1016/j.energy.2015.12.092
7.
Yang
,
F.
,
Dong
,
X.
,
Zhang
,
H.
,
Wang
,
Z.
,
Yang
,
K.
,
Zhang
,
J.
,
Wang
,
E.
,
Liu
,
H.
, and
Zhao
,
G.
,
2014
, “
Performance Analysis of Waste Heat Recovery With a Dual Loop Organic Rankine Cycle (ORC) System for Diesel Engine Under Various Operating Conditions
,”
Energy Convers. Manage.
,
80
, pp.
243
255
. 10.1016/j.enconman.2014.01.036
8.
Shu
,
G.
,
Wang
,
X.
, and
Tian
,
H.
,
2016
, “
Theoretical Analysis and Comparison of Rankine Cycle and Different Organic Rankine Cycles as Waste Heat Recovery System for a Large Gaseous Fuel Internal Combustion Engine
,”
Appl. Therm. Eng.
,
108
, pp.
525
537
. 10.1016/j.applthermaleng.2016.07.070
9.
Ahmed
,
A.
,
Esmaeil
,
K. K.
,
Irfan
,
M. A.
, and
Al-Mufadi
,
F. A.
,
2018
, “
Design Methodology of Organic Rankine Cycle for Waste Heat Recovery in Cement Plants
,”
Appl. Therm. Eng.
,
129
, pp.
421
430
. 10.1016/j.applthermaleng.2017.10.019
10.
Önder
,
K.
,
2014
, “
Energy and Exergy Analysis of an Organic Rankine for Power Generation From Waste Heat Recovery in Steel Industry
,”
Energy Convers. Manage.
,
77
, pp.
108
117
. 10.1016/j.enconman.2013.09.026
11.
Mirzaei
,
M.
,
Ahmadi
,
M. H.
,
Mobin
,
M.
,
Nazari
,
M. A.
, and
Alayi
,
R.
,
2018
, “
Energy, Exergy and Economics Analysis of an ORC Working With Several Fluids and Utilizes Smelting Furnace Gases as Heat Source
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
230
237
. 10.1016/j.tsep.2017.11.011
12.
Liao
,
G.
,
Chen
,
J.
, and
Leng
,
E.
,
2020
, “
Advanced Exergy Analysis for Organic Rankine Cycle-Based Layout to Recover Waste Heat of Flue Gas
,”
Appl. Energy
,
266
, p.
114891
. 10.1016/j.apenergy.2020.114891
13.
Walraven
,
D.
,
Laenen
,
B.
, and
D’haeseleer
,
W.
,
2013
, “
Comparison of Thermodynamic Cycles for Power Production From Low-Temperature Geothermal Heat Sources
,”
Energy Convers. Manage.
,
66
, pp.
220
233
. 10.1016/j.enconman.2012.10.003
14.
Yamankaradeniz
,
N.
,
Bademlioglu
,
A.
, and
Kaynakli
,
O.
,
2018
, “
Performance Assessments of Organic Rankine Cycle With Internal Heat Exchanger Based on Exergetic Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102001
. 10.1115/1.4040108
15.
Yang
,
J.
,
Li
,
J.
,
Yang
,
Z.
, and
Duan
,
Y.
,
2019
, “
Thermodynamic Analysis and Optimization of a Solar Organic Rankine Cycle Operating With Stable Output
,”
Energy Convers. Manage.
,
187
, pp.
459
471
. 10.1016/j.enconman.2019.03.021
16.
Drescher
,
U.
, and
Brüggemann
,
D.
,
2007
, “
Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
223
228
. 10.1016/j.applthermaleng.2006.04.024
17.
Dai
,
B.
,
Zhu
,
K.
,
Wang
,
Y.
,
Sun
,
Z.
, and
Liu
,
Z.
,
2019
, “
Evaluation of Organic Rankine Cycle by Using Hydrocarbons as Working Fluids: Advanced Exergy and Advanced Exergoeconomic Analyses
,”
Energy Convers. Manage.
,
197
, p.
111876
. 10.1016/j.enconman.2019.111876
18.
Zhao
,
Y.
,
Liu
,
G.
,
Li
,
L.
,
Yang
,
Q.
,
Tang
,
B.
, and
Liu
,
Y.
,
2019
, “
Expansion Devices for Organic Rankine Cycle (ORC) Using in Low Temperature Heat Recovery: A Review
,”
Energy Convers. Manage.
,
199
, p.
111944
. 10.1016/j.enconman.2019.111944
19.
Holik
,
M.
,
Živić
,
M.
,
Virag
,
Z.
, and
Barac
,
A.
,
2019
, “
Optimization of an Organic Rankine Cycle Constrained by the Application of Compact Heat Exchangers
,”
Energy Convers. Manage.
,
188
, pp.
333
345
. 10.1016/j.enconman.2019.03.039
20.
Xu
,
W.
,
Zhao
,
L.
,
Mao
,
S. S.
, and
Deng
,
S.
,
2020
, “
Towards Novel Low Temperature Thermodynamic Cycle: A Critical Review Originated From Organic Rankine Cycle
,”
Appl. Energy
,
270
, p.
115186
. 10.1016/j.apenergy.2020.115186
21.
Wu
,
S.-Y.
,
Zhou
,
S.-M.
,
Xiao
,
L.
,
Li
,
Y.-R.
,
Liu
,
C.
, and
Xu
,
J.-L.
,
2014
, “
Determining the Optimal Pinch Point Temperature Difference of Evaporator for Waste Heat Recovery
,”
J. Energy Inst.
,
87
(
2
), pp.
140
151
. 10.1016/j.joei.2014.03.010
22.
Liu
,
B.-T.
,
Chien
,
K.-H.
, and
Wang
,
C.-C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
(
8
), pp.
1207
1217
. 10.1016/j.energy.2004.01.004
23.
Zhang
,
X.
,
Zhang
,
Y.
, and
Wang
,
J.
,
2020
, “
New Classification of Dry and Isentropic Working Fluids and a Method Used to Determine Their Optimal or Worst Condensation Temperature Used in Organic Rankine Cycle
,”
Energy
,
201
, p.
117722
. 10.1016/j.energy.2020.117722
24.
Chen
,
G.
,
An
,
Q.
,
Wang
,
Y.
,
Zhao
,
J.
,
Chang
,
N.
, and
Alvi
,
J.
,
2019
, “
Performance Prediction and Working Fluids Selection for Organic Rankine Cycle Under Reduced Temperature
,”
Appl. Therm. Eng.
,
153
, pp.
95
103
. 10.1016/j.applthermaleng.2019.02.011
25.
Sarkar
,
J.
,
2018
, “
Generalized Pinch Point Design Method of Subcritical–Supercritical Organic Rankine Cycle for Maximum Heat Recovery
,”
Energy
,
143
, pp.
141
150
. 10.1016/j.energy.2017.10.057
26.
Zhu
,
S.
,
Deng
,
K.
, and
Qu
,
S.
,
2013
, “
Energy and Exergy Analyses of a Bottoming Rankine Cycle for Engine Exhaust Heat Recovery
,”
Energy
,
58
, pp.
448
457
. 10.1016/j.energy.2013.06.031
27.
Sun
,
J.
,
Liu
,
Q.
, and
Duan
,
Y.
,
2018
, “
Effects of Evaporator Pinch Point Temperature Difference on Thermo-economic Performance of Geothermal Organic Rankine Cycle Systems
,”
Geothermics
,
75
, pp.
249
258
. 10.1016/j.geothermics.2018.06.001
28.
Jankowski
,
M.
,
Borsukiewicz
,
A.
,
Szopik-Depczyńska
,
K.
, and
Ioppolo
,
G.
,
2019
, “
Determination of an Optimal Pinch Point Temperature Difference Interval in ORC Power Plant Using Multi-Objective Approach
,”
J. Clean. Prod.
,
217
, pp.
798
807
. 10.1016/j.jclepro.2019.01.250
29.
Rad
,
E. A.
,
Mohammadi
,
S.
, and
Tayyeban
,
E.
,
2020
, “
Simultaneous Optimization of Working Fluid and Boiler Pressure in an Organic Rankine Cycle for Different Heat Source Temperatures
,”
Energy
,
194
, p.
116856
. 10.1016/j.energy.2019.116856
30.
Arriola-Medellín
,
A.
,
Manzanares-Papayanopoulos
,
E.
, and
Romo-Millares
,
C.
,
2014
, “
Diagnosis and Redesign of Power Plants Using Combined Pinch and Exergy Analysis
,”
Energy
,
72
, pp.
643
651
. 10.1016/j.energy.2014.05.090
31.
Hamsani
,
M. N.
,
Walmsley
,
T. G.
,
Liew
,
P. Y.
, and
Alwi
,
S. R. W.
,
2018
, “
Combined Pinch and Exergy Numerical Analysis for Low Temperature Heat Exchanger Network
,”
Energy
,
153
, pp.
100
112
. 10.1016/j.energy.2018.04.023
32.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
. 10.1115/1.4038963
33.
Yu
,
H.
,
Feng
,
X.
, and
Wang
,
Y.
,
2015
, “
A New Pinch Based Method for Simultaneous Selection of Working Fluid and Operating Conditions in an ORC (organic Rankine Cycle) Recovering Waste Heat
,”
Energy
,
90
, pp.
36
46
. 10.1016/j.energy.2015.02.059
34.
Lampe
,
M.
,
Stavrou
,
M.
,
Bücker
,
H. M.
,
Gross
,
J.
, and
Bardow
,
A.
,
2014
, “
Simultaneous Optimization of Working Fluid and Process for Organic Rankine Cycles Using PC-SAFT
,”
Ind. Eng. Chem. Res.
,
53
(
21
), pp.
8821
8830
. 10.1021/ie5006542
35.
Park
,
B.-S.
,
Usman
,
M.
,
Imran
,
M.
, and
Pesyridis
,
A.
,
2018
, “
Review of Organic Rankine Cycle Experimental Data Trends
,”
Energy Convers. Manage.
,
173
, pp.
679
691
. 10.1016/j.enconman.2018.07.097
36.
Feng
,
Y.
,
Wang
,
X.
,
Niaz
,
H.
,
Hung
,
T.-C.
,
Jahan Zeb
,
A.
, and
Xi
,
H.
,
2020
, “
Experimental Comparison of the Performance of Basic and Regenerative Organic Rankine Cycles
,”
Energy Convers. Manage.
,
223
, p.
113459
. 10.1016/j.enconman.2020.113459
37.
Moran
,
M.
,
1989
,
Availability Analysis: A Guide to Efficient Energy Use
,
ASME Press
,
New York
.
38.
Wark
,
K.
,
1995
,
Advanced Thermodynamics for Engineers
,
McGraw-Hill
,
New York
.
39.
Ayres
,
R. U.
,
Peiró
,
L. T.
, and
Méndez
,
G. V.
,
2011
, “
Exergy Efficiency in Industry: Where Do We Stand?
Environ. Sci. Technol.
,
45
(
24
), pp.
10634
10641
. 10.1021/es202193u
40.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2019
, “
Splitting Physical Exergy: Theory and Application
,”
Energy
,
167
, pp.
698
707
. 10.1016/j.energy.2018.10.090
41.
Hærvig
,
J.
,
Sørensen
,
K.
, and
Condra
,
T.
,
2016
, “
Guidelines for Optimal Selection of Working Fluid for an Organic Rankine Cycle in Relation to Waste Heat Recovery
,”
Energy
,
96
, pp.
592
602
. 10.1016/j.energy.2015.12.098
42.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,” National Institute of Standards and Technology.
43.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
. 10.1021/ie4033999
44.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
45.
Zhai
,
H.
,
An
,
Q.
, and
Shi
,
L.
,
2016
, “
Analysis of the Quantitative Correlation Between the Heat Source Temperature and the Critical Temperature of the Optimal Pure Working Fluid for Subcritical Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
99
, pp.
383
391
. 10.1016/j.applthermaleng.2016.01.058
46.
Peck
,
R.
,
Olsen
,
C.
, and
Devore
,
J.
,
2016
,
Introduction to Statistics and Data Analysis
, 5th ed.,
Cengage Learning
,
Boston, MA
.
You do not currently have access to this content.