Abstract

In this study, a set of three new silica-based embedded with NiO and/or MgO nanocatalysts (SBNs) have been prepared and tested for the pyrolysis of scrap tires (STs). The intent is to identify and optimize the best nanocatalyst that decreases the operating temperature and speeds up the pyrolysis reaction rate. The influence of the three prepared SBNs nanocatalysts on STs was scrutinized using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The kinetic triplets were estimated utilizing the isoconversional method of the Ozawa–Flynn–Wall (OFW) corrected model. Experimental TGA and FT-IR results showed a thermal decomposition of all volatile organic additives alongside the polyvinyl compounds at a lower temperature in the presence of these SBNs. However, a competitive decomposition behavior appeared for each SBN nanocatalysts. The kinetic triplets’ findings showed different effective activation energy trends at two different conversion regions (low and high conversions), suggesting different reaction mechanisms confirmed by the reaction kinetic models. Interestingly, NiO-MgO-SBNs showed the highest reaction rate for this thermo-pyrolysis of STs, which could be because of synergetic interaction between NiO and MgO nanoparticles. Moreover, the results of the change in Gibbs free energy of activation (ΔG) indicated the promising catalytic activity for those SBNs by promoting the spontaneity of pyrolysis reaction. These proof-of-concept findings could promote the futuristic use of NiO-MgO-SBNs at the industrial level toward sustainable ST pyrolysis.

References

1.
Li
,
W.
,
Huang
,
C.
,
Li
,
D.
,
Huo
,
P.
,
Wang
,
M.
,
Han
,
L.
,
Chen
,
G.
,
Li
,
H.
,
Li
,
X.
,
Wang
,
Y.
, and
Wang
,
M.
,
2016
, “
Derived Oil Production by Catalytic Pyrolysis of Scrap Tires
,”
Chin. J. Catal.
,
37
(
4
), pp.
526
532
.
2.
Fernández
,
A. M.
,
Barriocanal
,
C.
, and
Alvarez
,
R.
,
2012
, “
Pyrolysis of a Waste From the Grinding of Scrap Tires
,”
J. Hazard. Mater.
,
203–204
, pp.
236
243
.
3.
Ziadat
,
A. H.
, and
Sood
,
E.
,
2014
, “
An Environmental Impact Assessment of the Open Burning of Scrap Tires
,”
J. Appl. Sci.
,
14
(
21
), p.
2695
2703
.
4.
Amer
,
E. H.
,
Palestine
,
N.
,
Al Wadaee
,
A.
, and
Bahreen
,
U. N. E. P.
,
2013
, “
The Development of a National Master Plan for Hazardous Waste Management for the Palestinian National Authority (PNA)
.”
5.
Murillo
,
R.
,
Aylón
,
E.
,
Navarro
,
M. V.
,
Callén
,
M. S.
,
Aranda
,
A.
, and
Mastral
,
A. M.
,
2006
, “
The Application of Thermal Processes to Valorise Waste Tyre
,”
Fuel Process. Technol.
,
87
(
2
), pp.
143
147
.
6.
Roy
,
C.
,
Chaala
,
A.
, and
Darmstadt
,
H.
,
1999
, “
The Vacuum Pyrolysis of Used Tires: End-Uses for Oil and Carbon Black Products
,”
J. Anal. Appl. Pyrolysis
,
51
(
1–2
), pp.
201
221
.
7.
Abdallah
,
R.
,
Juaidi
,
A.
,
Assad
,
M.
,
Salameh
,
T.
, and
Manzano-Agugliaro
,
F.
,
2020
, “
Energy Recovery From Waste Tires Using Pyrolysis: Palestine as Case of Study
,”
Energies
,
13
(
7
), p.
1817
.
8.
Martínez
,
J. D.
,
Puy
,
N.
,
Murillo
,
R.
,
García
,
T.
,
Navarro
,
M. V.
, and
Mastral
,
A. M.
,
2013
, “
Waste Tyre Pyrolysis—A Review
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
179
213
.
9.
Alsaleh
,
A.
, and
Sattler
,
M. L.
,
2014
, “
Waste Tire Pyrolysis: Influential Parameters and Product Properties
,”
Curr. Sustainable/Renewable Energy Rep.
,
1
(
4
), pp.
129
135
.
10.
Wójtowicz
,
M. A.
, and
Serio
,
M. A.
,
1996
, “
Pyrolysis of Scrap Tires: Can It Be Profitable?
,”
Chem. Tech.
,
26
, pp.
48
53
.
11.
Unapumnuk
,
K.
,
Keener
,
T. C.
,
Lu
,
M.
, and
Khang
,
S. J.
,
2006
, “
Pyrolysis Behavior of Tire-Derived Fuels at Different Temperatures and Heating Rates
,”
J. Air Waste Manage. Assoc.
,
56
(
5
), pp.
618
627
.
12.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Kuncser
,
R.
,
Tazerout
,
M.
, and
Zagrouba
,
F.
,
2017
, “
Catalysts' Influence on Thermochemical Decomposition of Waste Tires
,”
Environ. Prog. Sustainable Energy
,
36
(
5
), pp.
1560
1567
.
13.
Shah
,
J.
,
Rasul Jan
,
M.
, and
Mabood
,
F.
,
2008
, “
Catalytic Pyrolysis of Waste Tyre Rubber Into Hydrocarbons via Base Catalysts
,”
Iran. J. Chem. Chem. Eng.
,
27
(
2
), pp.
103
109
.
14.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2017
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032203
.
15.
Williams
,
P. T.
, and
Brindle
,
A. J.
,
2002
, “
Catalytic Pyrolysis of Tyres: Influence of Catalyst Temperature
,”
Fuel
,
81
(
18
), pp.
2425
2434
.
16.
Boxiong
,
S.
,
Chunfei
,
W.
,
Binbin
,
G.
, and
Rui
,
W.
,
2007
, “
Pyrolysis of Waste Tyres With Zeolite USY and ZSM-5 Catalysts
,”
Appl. Catal., B
,
73
(
1–2
), pp.
150
157
.
17.
Arabiourrutia
,
M.
,
Olazar
,
M.
,
Aguado
,
R.
,
López
,
G.
,
Barona
,
A.
, and
Bilbao
,
J.
,
2008
, “
HZSM-5 and HY Zeolite Catalyst Performance in the Pyrolysis of Tires in a Conical Spouted Bed Reactor
,”
Ind. Eng. Chem. Res.
,
47
(
20
), pp.
7600
7609
.
18.
Shah
,
J.
,
Jan
,
M. R.
, and
Mabood
,
F.
,
2009
, “
Recovery of Value-Added Products From the Catalytic Pyrolysis of Waste Tyre
,”
Energy Convers. Manage
,
50
(
4
), pp.
991
994
.
19.
Zhang
,
X.
,
Wang
,
T.
,
Ma
,
L.
, and
Chang
,
J.
,
2008
, “
Vacuum Pyrolysis of Waste Tires With Basic Additives
,”
Waste Manage.
,
28
(
11
), pp.
2301
2310
.
20.
Kar
,
Y.
,
2011
, “
Catalytic Pyrolysis of Car Tire Waste Using Expanded Perlite
,”
Waste Manage.
,
31
(
8
), pp.
1772
1782
.
21.
El-Qanni
,
A.
,
2017
, “
Development of Sustainable Nanosorbcats Based Technology for Hydrocarbons and Organic Pollutants Recovery From Industrial Wastewater
,”
University of Calgary
,
Calgary, AB
.
22.
Cheng
,
Z.
,
Li
,
M.
,
Li
,
J.
,
Lin
,
F.
,
Ma
,
W.
,
Yan
,
B.
, and
Chen
,
G.
,
2020
, “
Transformation of Nitrogen, Sulfur and Chlorine During Waste Tire Pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
153
.
23.
Abuhatab
,
S.
,
El-Qanni
,
A.
,
Marei
,
N. N.
,
Hmoudah
,
M.
, and
El-Hamouz
,
A.
,
2019
, “
Sustainable Competitive Adsorption of Methylene Blue and Acid Red 88 From Synthetic Wastewater Using NiO and/or MgO Silicate Based Nanosorbcats: Experimental and Computational Modeling Studies
,”
RSC Adv.
,
9
(
61
), pp.
35483
35498
.
24.
El-Qanni
,
A.
,
Nassar
,
N. N.
, and
Vitale
,
G.
,
2017
, “
Experimental and Computational Modeling Studies on Silica-Embedded NiO/MgO Nanoparticles for Adsorptive Removal of Organic Pollutants From Wastewater
,”
RSC Adv.
,
7
(
23
), pp.
14021
14038
.
25.
El-Qanni
,
A.
,
Nassar
,
N. N.
, and
Vitale
,
G.
,
2017
, “
A Combined Experimental and Computational Modeling Study on Adsorption of Propionic Acid Onto Silica-Embedded NiO/MgO Nanoparticles
,”
Chem. Eng. J.
,
327
, pp.
666
677
.
26.
Choi
,
G. G.
,
Jung
,
S. H.
,
Oh
,
S. J.
, and
Kim
,
J. S.
,
2014
, “
Total Utilization of Waste Tire Rubber Through Pyrolysis to Obtain Oils and CO2 Activation of Pyrolysis Char
,”
Fuel Process. Technol.
,
123
, pp.
57
64
.
27.
Seidelt
,
S.
,
Müller-Hagedorn
,
M.
, and
Bockhorn
,
H.
,
2006
, “
Description of Tire Pyrolysis by Thermal Degradation Behaviour of Main Components
,”
J. Anal. Appl. Pyrolysis
,
75
(
1
), pp.
11
18
.
28.
Nassar
,
N. N.
,
Hassan
,
A.
,
Luna
,
G.
, and
Pereira-Almao
,
P.
,
2013
, “
Comparative Study on Thermal Cracking of Athabasca Bitumen
,”
J. Therm. Anal. Calorim.
,
114
(
2
), pp.
465
472
.
29.
Nassar
,
N. N.
,
Hassan
,
A.
, and
Vitale
,
G.
,
2014
, “
Comparing Kinetics and Mechanism of Adsorption and Thermo-Oxidative Decomposition of Athabasca Asphaltenes Onto TiO2, ZrO2, and CeO2 Nanoparticles
,”
Appl. Catal., A
,
484
, pp.
161
171
.
30.
Farjas
,
J.
, and
Roura
,
P.
,
2012
, “
Isoconversional Analysis of Solid-State Transformations
,”
J. Therm. Anal. Calorim.
,
109
(
1
), pp.
183
191
.
31.
Doyle
,
C. D.
,
1961
, “
Kinetic Analysis of Thermogravimetric Data
,”
J. Appl. Polym. Sci.
,
5
(
15
), pp.
285
292
.
32.
Doyle
,
C. D.
,
1965
, “
Series Approximations to the Equation of Thermogravimetric Data
,”
Nature
,
207
(
4994
), pp.
290
291
.
33.
El-Qanni
,
A.
,
Nassar
,
N. N.
,
Vitale
,
G.
, and
Hassan
,
A.
,
2016
, “
Maghemite Nanosorbcats for Methylene Blue Adsorption and Subsequent Catalytic Thermo-Oxidative Decomposition: Computational Modeling and Thermodynamics Studies
,”
J. Colloid Interface Sci.
,
461
, pp.
396
408
.
34.
Vyazovkin
,
S.
,
Chrissafis
,
K.
,
Di Lorenzo
,
M. L.
,
Koga
,
N.
,
Pijolat
,
M.
,
Roduit
,
B.
,
Sbirrazzuoli
,
N.
, and
Suñol
,
J. J.
,
2014
, “
ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations
,”
Thermochim. Acta
,
590
, pp.
1
23
.
35.
Marei
,
N. N.
,
Nassar
,
N. N.
,
Hmoudah
,
M.
,
El-Qanni
,
A.
,
Vitale
,
G.
, and
Hassan
,
A.
,
2017
, “
Nanosize Effects of NiO Nanosorbcats on Adsorption and Catalytic Thermo-Oxidative Decomposition of Vacuum Residue Asphaltenes
,”
Can. J. Chem. Eng.
,
95
(
10
), pp.
1864
1874
.
36.
Vyazovkin
,
S.
,
1996
, “
A Unified Approach to Kinetic Processing of Nonisothermal Data
,”
Int. J. Chem. Kinet.
,
28
(
2
), pp.
95
101
.
37.
Caponero
,
J.
,
Tenório
,
J. A.
,
Levendis
,
Y. A.
, and
Carlson
,
J. B.
,
2005
, “
Emissions of Batch Combustion of Waste Tire Chips: The Pyrolysis Effect
,”
Combust. Sci. Technol.
,
177
(
2
), pp.
347
381
.
38.
Nassar
,
N. N.
,
Franco
,
C. A.
,
Montoya
,
T.
,
Cortés
,
F. B.
, and
Hassan
,
A.
,
2015
, “
Effect of Oxide Support on Ni–Pd Bimetallic Nanocatalysts for Steam Gasification of n-C7 Asphaltenes
,”
Fuel
,
156
, pp.
110
120
.
39.
Noisong
,
P.
, and
Danvirutai
,
C.
,
2010
, “
Kinetics and Mechanism of Thermal Dehydration of KMnPO4·H2O in a Nitrogen Atmosphere
,”
Ind. Eng. Chem. Res.
,
49
(
7
), pp.
3146
3151
.
40.
Šesták
,
J.
, and
Berggren
,
G.
,
1971
, “
Study of the Kinetics of the Mechanism of Solid-State Reactions at Increasing Temperatures
,”
Thermochim. Acta
,
3
(
1
), pp.
1
12
.
41.
Vlaev
,
L.
,
Nedelchev
,
N.
,
Gyurova
,
K.
, and
Zagorcheva
,
M.
,
2008
, “
A Comparative Study of Non-Isothermal Kinetics of Decomposition of Calcium Oxalate Monohydrate
,”
J. Anal. Appl. Pyrolysis
,
81
(
2
), pp.
253
262
.
42.
Brundege
,
J. A.
, and
Parravano
,
G.
,
1963
, “
The Distribution of Reaction Rates and Activation Energies on Catalytic Surfaces: Exchange Reaction Between Gaseous Benzene and Benzene Adsorbed on Platinum
,”
J. Catal.
,
2
(
5
), pp.
380
396
.
43.
Wachs
,
I. E.
,
Deo
,
G.
,
Kim
,
D. S.
,
Vuurman
,
M. A.
, and
Hu
,
H.
,
1993
, “
Molecular Design of Supported Metal Oxide Catalysts
,”
Stud. Surf. Sci. Catal.
,
75
, pp.
543
557
.
44.
Triyono
,
T.
,
2004
, “
Correlation Between Preexponential Factor and Activation Energy of Isoamylalcohol Hydrogenolysis on Platinum Catalysts
,”
Indones. J. Chem
,
4
(
1
), pp.
1
5
.
45.
Atkins
,
P.
, and
De Paula
,
J.
,
2006
,
Atkins' Physical Chemistry
,
WH Freman
,
New York
.
46.
Policella
,
M.
,
Wang
,
Z.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Characteristics of Syngas From Pyrolysis and CO2-Assisted Gasification of Waste Tires
,”
Appl. Energy
,
254
, p.
113678
.
47.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel
,
257
, p.
116025
.
48.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
You do not currently have access to this content.