Abstract

Many research studies have focused on utilizing gasoline in modern compression ignition engines to reduce emissions and improve efficiency. Collectively, this combustion mode has become kn+own as gasoline compression ignition (GCI). One of the biggest challenges with GCI operation is maintaining control over the combustion process through the fuel injection strategy, such that the engine can be controlled on a cycle-by-cycle basis. Research studies have investigated a wide variety of GCI injection strategies (i.e., fuel stratification levels) to maintain control over the heat release rate while achieving low-temperature combustion (LTC). This work shows that at loads relevant to light-duty engines, partial fuel stratification (PFS) with gasoline provides very little controllability over the timing of combustion. On the contrary, heavy fuel stratification (HFS) provides very linear and pronounced control over the timing of combustion. However, the HFS strategy has challenges achieving LTC operation due to the air handling burdens associated with the high exhaust gas recirculation (EGR) rates that are required to reduce NOx emissions to near zero levels. In this work, a wide variety of gasoline fuel reactivities (octane numbers ranging from <40 to 87) were investigated to understand the engine performance and emissions of HFS-GCI operation on a multi-cylinder light-duty engine. The results indicate that over an EGR sweep at 4 bar brake mean effective pressure (BMEP), the gasoline fuels can achieve LTC operation with ultra-low NOx and soot emissions, while conventional diesel combustion (CDC) is unable to simultaneously achieve low NOx and soot. At 10 bar BMEP, all the gasoline fuels were compared to diesel, but using mixing controlled combustion and not LTC.

References

1.
Dempsey
,
A. B.
,
Curran
,
S. J.
, and
Wagner
,
R. M.
,
2016
, “
A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions: Effects of In-Cylinder Fuel Stratification
,”
Int. J. Engine Res.
,
17
(
8
), pp.
897
917
.
2.
Sjöberg
,
M.
,
Edling
,
L.
,
Eliassen
,
T.
,
Magnusson
,
L.
, and
Angström
,
H.
,
2002
, “
GDI HCCI: Effects of Injection Timing and Air Swirl on Fuel Stratification, Combustion and Emissions Formation
,” SAE Technical Paper 2002-01-0106.
3.
Dec
,
J. E.
, and
Sjöberg
,
M.
,
2004
, “
Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control
,” SAE Technical Paper 2004-01-0557.
4.
Dec
,
J. E.
,
Yang
,
Y.
, and
Dronniou
,
N.
,
2011
, “
Boosted HCCI—Controlling Pressure-Rise Rates for Performance Improvements Using Partial Fuel Stratification With Conventional Gasoline
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1169
1189
.
5.
Loeper
,
P.
,
Ra
,
Y.
,
Adams
,
C.
,
Foster
,
D. E.
,
Ghandhi
,
J.
,
Andrie
,
M.
,
Krieger
,
R.
, and
Durrett
,
R.
,
2013
, “
Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine
,” SAE Technical Paper 2013-01-0896.
6.
Dempsey
,
A. B.
,
Walker
,
N. R.
,
Gingrich
,
E.
, and
Reitz
,
R. D.
,
2014
, “
Comparison of Low Temperature Combustion Strategies for Advanced Compression Ignition Engines With a Focus on Controllability
,”
Combust. Sci. Technol.
,
186
(
2
), pp.
210
241
.
7.
Dempsey
,
A. B.
,
Curran
,
S.
,
Wagner
,
R.
, and
Cannella
,
W.
,
2015
, “
Effect of Premixed Fuel Preparation for Partially Premixed Combustion With a Low Octane Gasoline on a Light-Duty Multicylinder Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111506
.
8.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2011
, “
Gasoline Direct Injection Compression Ignition (GDCI)—Diesel-Like Efficiency With Low CO2 Emissions
,”
SAE Int. J. Engines
,
4
(
1
), pp.
2010
2022
.
9.
Sellnau
,
M. C.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2012
, “
Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM
,”
SAE Int. J. Engines
,
5
(
2
), pp.
300
314
.
10.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D. E.
,
Reitz
,
R. D.
, and
Durrett
,
R.
,
2012
, “
Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1109
1132
.
11.
Tanov
,
S.
,
Collin
,
R.
,
Johansson
,
B.
, and
Tuner
,
M.
,
2014
, “
Combustion Stratification With Partially Premixed Combustion, PPC, Using NVO and Split Injection in a LD—Diesel Engine
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1911
1919
.
12.
Dempsey
,
A. B.
,
Das Adhikary
,
B.
,
Viswanathan
,
S.
, and
Reitz
,
R. D.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Using Premixed Hydrated Ethanol and Direct Injection Diesel
,”
ASME Internal Combustion Engine ICEF
,
Morgantown, WV
, pp.
963
975
.
13.
Kalghatgi
,
G. T.
,
Risberg
,
P.
, and
Angstrom
,
H.-E.
,
2006
, “
Advantages of Fuels With High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion
,”
SAE Technical Paper 2006-01-3385
.
14.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,”
SAE Technical Paper 2009-01-0944
.
15.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,” SAE Technical Paper 2009-01-1442.
16.
Manente
,
V.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2010
, “
Effects of Ethanol and Different Type of Gasoline Fuels on Partially Premixed Combustion From Low to High Load
,”
SAE Technical Paper 2010-01-0871
.
17.
Won
,
H.-W.
,
Peters
,
N.
,
Tait
,
N.
, and
Kalghatgi
,
G.
,
Oct. 2011
, “
Sufficiently Premixed Compression Ignition of a Gasoline-Like Fuel Using Three Different Nozzles in a Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D
,
226
(
5
), pp.
698
708
.
18.
Kalghatgi
,
G. T.
,
Hildingsson
,
L.
,
Harrison
,
A. J.
, and
Johansson
,
B.
,
2011
, “
Autoignition Quality of Gasoline Fuels in Partially Premixed Combustion in Diesel Engines
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3015
3021
.
19.
López
,
J. J.
,
García-Oliver
,
J. M.
,
García
,
A.
, and
Domenech
,
V.
,
2014
, “
Gasoline Effects on Spray Characteristics, Mixing and Auto-Ignition Processes in a CI Engine Under Partially Premixed Combustion Conditions
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
996
1006
.
20.
Zhang
,
Y.
,
Voice
,
A.
,
Pei
,
Y.
,
Traver
,
M.
, and
Cleary
,
D.
,
2018
, “
A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102202
.
21.
Tang
,
M.
,
Pei
,
Y.
,
Guo
,
H.
,
Zhang
,
Y.
,
Torelli
,
R.
,
Probst
,
D.
,
Fütterer
,
C.
, and
Traver
,
M.
,
2021
, “
Piston Bowl Geometry Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062309
.
22.
Wang
,
M.
,
Lee
,
H.
, and
Molburg
,
J.
,
2003
, “
Allocation of Energy Use in Petroleum Refineries to Petroleum Products: Implications for Life-Cycle Energy Use and Emission Inventory of Petroleum Transportation Fuels
,”
Int. J. Life Cycle Assess.
,
9
(
1
), pp.
34
44
.
23.
Manente
,
V.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2011
, “
Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?
,”
Int. J. Engine Res.
,
12
(
3
), pp.
194
208
.
24.
Yang
,
Y.
,
Dec
,
J.
,
Dronniou
,
N.
, and
Cannella
,
W.
,
2012
, “
Boosted HCCI Combustion Using Low-Octane Gasoline With Fully Premixed and Partially Stratified Charges
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1075
1088
.
25.
Dempsey
,
A. B.
,
2013
, “
Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) With Alternative Fuels
,”
PhD dissertation
,
Mechanical Engineering, University of Wisconsin-Madison
,
Madison, WI
.
26.
Amsden
,
A. A.
,
O’Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II – A Computer Program for Chemically Reactive Flows with Sprays
,”
User Manual
,
Los Alamos, NM
.
27.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,”
User Manual
,
Los Alamos, NM
.
28.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, improvements to KIVA-3V
,”
User Manual
,
Los Alamo, NM
.
29.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.
30.
Dempsey
,
A. B.
,
Wang
,
B.-L.
,
Reitz
,
R. D.
,
Petersen
,
B.
,
Sahoo
,
D.
, and
Miles
,
P. C.
,
2012
, “
Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements With CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine
,”
SAE Int. J. Engines
,
5
(
2
), pp.
162
184
.
31.
Reitz
,
R. D.
,
2014
, “
Princeton University Combustion Energy Frontier Research Center (CEFRC)
,” Combustion Summer School Lecture Series: Reciprocating Engines, http://www.princeton.edu/cefrc/combustion-summer-school/archived-programs/2014-session/lecture-notes/#comp000053b7bb230000004a2e6291
32.
Dempsey
,
A. B.
,
Walker
,
N. R.
, and
Reitz
,
R.
,
2013
, “
Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion
,”
SAE Int. J. Fuels Lubr.
,
6
(
1
), pp.
170
187
.
33.
Dempsey
,
A. B.
,
Curran
,
S.
, and
Reitz
,
R. D.
,
2015
, “
Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline With a Cetane Improver on a Multi-Cylinder Engine
,”
SAE Int. J. Engines
,
8
(
2
), pp.
859
877
.
34.
Boyer
,
B.
,
2006
, “
A Methodology to Determine Engine Efficiency Goals and Baselines
,”
USCAR
,
Southfield, MI
.
35.
Sahoo
,
D.
,
Petersen
,
B.
, and
Miles
,
P. C.
,
2011
, “
Measurement of Equivalence Ratio in a Light-Duty Low Temperature Combustion Diesel Engine by Planar Laser Induced Fluorescence of a Fuel Tracer
,”
SAE Int. J. Engines
,
4
(
2
), pp.
2312
2325
.
36.
Raju
,
N. G. K.
,
Dempsey
,
A.
, and
Curran
,
S.
,
2016
, “
Analysis of Engine Air Handling Systems for Light-Duty Compression Ignition Engines Using 1-D Cycle Simulation: Achieving High Dilution Levels for Advanced Combustion
,”
ASME Internal Combustion Engine Fall Technical Conference (ICEF)
,
Greenville, SC
, pp.
1
14
.
37.
Solaka
,
H.
,
Aronsson
,
U.
,
Tuner
,
M.
, and
Johansson
,
B.
,
2012
, “
Investigation of Partially Premixed Combustion Characteristics in Low Load Range With Regards to Fuel Octane Number in a Light-Duty Diesel Engine
,”
SAE Technical Paper 2012-01-0684
.
38.
Ickes
,
A. M.
,
Bohac
,
S. V.
, and
Assanis
,
D. N.
,
2009
, “
Effect of 2-Ethylhexyl Nitrate Cetane Improver on NOx Emissions From Premixed Low-Temperature Diesel Combustion
,”
Energy Fuels
,
23
(
10
), pp.
4943
4948
.
39.
Noehre
,
C.
,
Andersson
,
M.
,
Johansson
,
B.
, and
Hultqvist
,
A.
,
2006
, “
Characterization of Partially Premixed Combustion
,”
SAE Technical Paper 2006-01-3412
.
40.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
, and
Dean
,
A. M.
,
2001
, “
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
,”
SAE Technical Paper 2001-01-0655
.
41.
Paz
,
J.
,
Staaden
,
D.
, and
Kokjohn
,
S.
,
2018
, “
Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load
,” WCX World Congress Experience, 1.
42.
Tsurushima
,
T.
,
Kunishima
,
E.
,
Asaumi
,
Y.
,
Aoyagi
,
Y.
, and
Enomoto
,
Y.
,
2002
, “
The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines
,”
SAE Technical Paper 2002-01-0108
.
You do not currently have access to this content.