Abstract

To consider the effect of adsorption and diffusion of surfactant on relative permeability, a method for estimating the relative permeability was developed by matching production data obtained through an unsteady-state core flooding experiment and numerical simulation. After the robustness of the method was proven, the necessity of considering surfactant adsorption and diffusion in calculating the relative permeability was proven. Compared with relative permeability curves obtained by neglecting surfactant adsorption and diffusion, the average error of the relative permeability curve obtained by considering surfactant adsorption and diffusion decreases from 11.5% to 3.5% for the oil phase and from 13.1% to 4.2% for the aqueous phase. Finally, the effects of interfacial tension (IFT) on relative permeability curves obtained by considering surfactant adsorption and diffusion were studied. The results show that surfactant adsorption and diffusion affect the relative permeability but not the change in the relative permeability curves for varying IFT. The individual relative permeability curve does straighten with decreasing IFT. As the IFT decreases in a semilog plot, the relative permeability values at the equal-permeability point (i.e., the same relative permeability for oil–water) and residual oil endpoint increase following a logistic function and an exponential function, respectively.

References

1.
Sheng
,
J. J.
,
2013
, “
A Comprehensive Review of Alkaline-Surfactant-Polymer (ASP) Flooding
,”
SPE Western Regional and AAPG Pacific Section Meeting 2013 Joint Technical Conference
,
Monterey City, CA
,
Apr. 19–25
,
Paper No. SPE-165358-MS
.
2.
Zheng
,
S.
,
Yang
,
M.
,
Kang
,
Z.
,
Liu
,
Z.
,
Long
,
X.
,
Liu
,
K.
,
Li
,
X.
, and
Zhang
,
S.
,
2019
, “
Controlling Factors of Remaining Oil Distribution After Water Flooding and Enhanced Oil Recovery Methods for Fracture-Cavity Carbonate Reservoirs in Tahe Oilfield
,”
Pet. Explor. Dev.
,
46
(
4
), pp.
786
795
.
3.
Askarinezhad
,
R.
,
Hatzignatiou
,
D. G.
, and
Stavland
,
A.
,
2018
, “
Core-Based Evaluation of Associative Polymers As Enhanced Oil Recovery Agents in Oil-Wet Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032915
.
4.
Guo
,
H.
,
Dou
,
M.
,
Wang
,
H.
,
Wang
,
F.
,
Gu
,
Y.
,
Yu
,
Z.
,
Wang
,
Y.
, and
Li
,
Y.
,
2015
, “
Review of Capillary Number in Chemical Enhanced Oil Recovery
,”
SPE Kuwait Oil and Gas Show and Conference
,
Mishref City, Kuwait
,
Oct. 11–14
,
Paper No. SPE-175172-MS
.
5.
Palizdan
,
S.
,
Abbasi
,
J.
,
Riazi
,
M.
, and
Malayeri
,
M. R.
,
2020
, “
Impact of Solutal Marangoni Convection on Oil Recovery During Chemical Flooding
,”
Pet. Sci.
,
17
(
5
), pp.
1298
1317
.
6.
Song
,
Y.
,
Xu
,
Y.
, and
Wang
,
Z.
,
2021
, “
An Experimental Study on Efficient Demulsification for Produced Emulsion in Alkaline/Surfactant/Polymer Flooding
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
093001
.
7.
Jiang
,
F.
,
Tsuji
,
T.
, and
Hu
,
C.
,
2014
, “
Elucidating the Role of Interfacial Tension for Hydrological Properties of Two-Phase Flow in Natural Sandstone by an Improved Lattice Boltzmann Method
,”
Transp. Porous Media
,
104
(
1
), pp.
205
229
.
8.
Li
,
Z.
,
Galindo-Torres
,
S.
,
Yan
,
G.
,
Scheuermann
,
A.
, and
Li
,
L.
,
2019
, “
Pore-Scale Simulations of Simultaneous Steady-State Two-Phase Flow Dynamics Using a Lattice Boltzmann Model: Interfacial Area, Capillary Pressure and Relative Permeability
,”
Transp. Porous Media
,
129
(
1
), pp.
295
320
.
9.
Yan
,
W.
,
Sun
,
J.
,
Dong
,
H.
, and
Cui
,
L.
,
2021
, “
Investigating NMR-Based Absolute and Relative Permeability Models of Sandstone Using Digital Rock Techniques
,”
J. Pet. Sci. Eng.
,
207
(
5
), p.
109105
.
10.
Harbert
,
L. W.
,
1983
, “
Low Interfacial Tension Relative Permeability
,”
SPE Annual Technical Conference and Exhibition
,
San Francisco City, CA
,
Oct. 5–8
,
Paper No. SPE-12171-MS
.
11.
Shen
,
P.
,
Zhu
,
B.
,
Li
,
X.
, and
Wu
,
Y.
,
2010
, “
An Experimental Study of the Influence of Interfacial Tension on Water–Oil Two-Phase Relative Permeability
,”
Transp. Porous Media
,
85
(
2
), pp.
505
520
.
12.
Amaefule
,
J. O.
, and
Handy
,
L. L.
,
1982
, “
The Effect of Interfacial Tensions on Relative Oil/Water Permeabilities of Consolidated Porous Media
,”
SPE J.
,
22
(
3
), pp.
371
381
.
13.
Hakiki
,
F.
,
Maharsi
,
D. A.
, and
Marhaendrajana
,
T.
,
2015
, “
Surfactant-Polymer Coreflood Simulation and Uncertainty Analysis Derived From Laboratory Study
,”
J. Eng. Technol. Sci.
,
47
(
6
), pp.
706
725
.
14.
Esmaeili
,
S.
,
Sarma
,
H.
,
Harding
,
T.
, and
Maini
,
B.
,
2019
, “
Review of the Effect of Temperature on Oil–Water Relative Permeability in Porous Rocks of Oil Reservoirs
,”
Fuel
,
237
, pp.
91
116
.
15.
Hosseini
,
E.
,
Hajivand
,
F.
, and
Tahmasebi
,
R.
,
2019
, “
The Effect of Alkaline–Surfactant on the Wettability, Relative Permeability and Oil Recovery of Carbonate Reservoir Rock: Experimental Investigation
,”
J. Pet. Explor. Prod. Technol.
,
9
(
4
), pp.
2877
2891
.
16.
Zabihi
,
S.
,
Faraji
,
D.
,
Rahnama
,
Y.
,
Hezave
,
A. Z.
, and
Ayatollahi
,
S.
,
2020
, “
Relative Permeability Measurement in Carbonate Rocks, the Effects of Conventional Surfactants Vs. Ionic Liquid-Based Surfactants
,”
J. Dispersion Sci. Technol.
,
41
(
12
), pp.
1797
1811
.
17.
Bo
,
Q.
,
Zhong
,
T.
, and
Liu
,
Q.
,
2003
, “
Pore Scale Network Modeling of Relative Permeability in Chemical Flooding
,”
SPE International Improved Oil Recovery Conference in Asia Pacific
,
Kuala Lumpur City, Malaysia
,
Oct. 20–21
,
Paper No. SPE-84906-MS
.
18.
Mirzaei
,
M.
, and
DiCarlo
,
D.
,
2013
, “
Imbibition of Anionic Surfactant Solution Into Oil-Wet Capillary Tubes
,”
Transp. Porous Media
,
99
(
1
), pp.
37
54
.
19.
Zhang
,
J.
,
Liu
,
H.
,
Wei
,
B.
,
Hou
,
J.
, and
Jiang
,
F.
,
2021
, “
Pore-Scale Modeling of Two-Phase Flows With Soluble Surfactants in Porous Media
,”
Energy Fuels
,
35
(
23
), pp.
19374
19388
.
20.
Liu
,
X.
, and
Yang
,
D.
,
2020
, “
Simultaneous Interpretation of Three-Phase Relative Permeability and Capillary Pressure for a Tight Carbonate Reservoir From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063001
.
21.
Zhang
,
W.
,
Hou
,
J.
,
Liu
,
Y.
,
Du
,
Q.
,
Cao
,
W.
, and
Zhou
,
K.
,
2021
, “
Study on the Effect of Polymer Viscosity and Darcy Velocity on Relative Permeability Curves in Polymer Flooding
,”
J. Pet. Sci. Eng.
,
200
(
9
), p.
108393
.
22.
Yin
,
D.
, and
Pu
,
H.
,
2008
, “
A Numerical Simulation Study on Surfactant Flooding and It's Field Application in Daqing Oilfield
,”
EUROPEC/EAGE Conference and Exhibition
,
Rome City, Italy
,
June 9–12
,
Paper No. SPE-112424-MS
.
23.
Chen
,
X.
,
Feng
,
Q.
,
Liu
,
W.
, and
Sepehrnoori
,
K.
,
2017
, “
Modeling Preformed Particle Gel Surfactant Combined Flooding for Enhanced Oil Recovery After Polymer Flooding
,”
Fuel
,
194
, pp.
42
49
.
24.
Barati-Harooni
,
A.
,
Najafi-Marghmaleki
,
A.
,
Tatar
,
A.
, and
Mohammadi
,
A. H.
,
2016
, “
Experimental and Modeling Studies on Adsorption of a Nonionic Surfactant on Sandstone Minerals in Enhanced Oil Recovery Process With Surfactant Flooding
,”
J. Mol. Liq.
,
220
, pp.
1022
1032
.
25.
Kamal
,
M. S.
,
Hussein
,
I. A.
, and
Sultan
,
A. S.
,
2017
, “
Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications
,”
Energy Fuels
,
31
(
8
), pp.
7701
7720
.
26.
Van Quy
,
N.
, and
Labrid
,
J.
,
1983
, “
A Numerical Study of Chemical Flooding Comparison With Experiments
,”
SPE J.
,
23
(
3
), pp.
461
474
.
27.
Rao
,
D. N.
,
Ayirala
,
S. C.
,
Abe
,
A. A.
, and
Xu
,
W.
,
2006
, “
Impact of Low-Cost Dilute Surfactants on Wettability and Relative Permeability
,”
SPE/DOE Symposium on Improved Oil Recovery
,
Tulsa City, OK
,
Apr. 22–26
,
Paper No. SPE-99609-MS
.
28.
CMG-STARS Technical Manual
,
2019
, “
Advanced Process and Thermal Deposit Simulator
,”
Computer Modelling Group Ltd.
,
Canada
.
29.
Arora
,
G.
, and
Singh
,
B. K.
,
2013
, “
Numerical Solution of Burgers’ Equation With Modified Cubic B-Spline Differential Quadrature Method
,”
Appl. Math. Comput.
,
224
, pp.
166
177
.
30.
Chen
,
S.
,
Li
,
G.
,
Peres
,
A. M.
, and
Reynolds
,
A. C.
,
2008
, “
A Well Test for In-Situ Determination of Relative Permeability Curves
,”
SPE Reservoir Eval. Eng.
,
11
(
1
), pp.
95
107
.
31.
Kulkarni
,
K. N.
, and
Datta-Gupta
,
A.
,
2000
, “
Estimating Relative Permeability From Production Data: A Streamline Approach
,”
SPE J.
,
5
(
4
), pp.
402
411
.
32.
Fan
,
Z.
,
Yang
,
D.
,
Chai
,
D.
, and
Li
,
X.
,
2019
, “
Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model Using a Modified Iterative Ensemble Smoother
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022901
.
33.
Rwechungura
,
R. W.
,
Dadashpour
,
M.
, and
Kleppe
,
J.
,
2011
, “
Advanced History Matching Techniques Reviewed
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama City, Bahrain
,
Sept. 25–28
,
Paper No. SPE-142497-MS
.
34.
Gao
,
G.
,
Vink
,
J. C.
,
Chen
,
C.
,
Tarrahi
,
M.
, and
Khamra
,
Y. E.
,
2016
, “
Uncertainty Quantification for History Matching Problems With Multiple Best Matches Using a Distributed Gauss–Newton Method
,”
SPE Annual Technical Conference and Exhibition
,
Dubai City, UAE
,
Sept. 26–28
,
Paper No. SPE-181611-MS
.
35.
Sivaprasad
,
S.
, and
Warrier
,
P. M.
,
2018
, “
A Performance Study of Levenberg–Marquardt (LM) Algorithm in Echo Estimation
,”
International Conference on Advances in Computing, Communications and Informatics
,
Bangalore, India
,
Sept. 19–22
.
36.
Fulcher
,
R. A.
,
Ertekin
,
T.
, and
Stahl
,
C. D.
,
1985
, “
Effect of Capillary Number and Its Constituents on Two-Phase Relative Permeability Curves
,”
J. Pet. Technol.
,
37
(
2
), pp.
249
260
.
37.
Delshad
,
M.
,
Bhuyan
,
D.
,
Pope
,
G. A.
, and
Lake
,
L. W.
,
1986
, “
Effect of Capillary Number on the Residual Saturation of a Three-Phase Micellar Solution
,”
SPE Enhanced Oil Recovery Symposium
,
Tulsa City, OK
,
Apr. 20–23
,
Paper No. SPE-165358-MS
.
38.
Eltoum
,
H.
,
Yang
,
Y. L.
, and
Hou
,
J. R.
,
2021
, “
The Effect of Nanoparticles on Reservoir Wettability Alteration: A Critical Review
,”
Pet. Sci.
,
18
(
1
), pp.
136
153
.
39.
Hassan
,
A. M.
, and
Al-Hashim
,
H. S.
,
2020
, “
Oil Recovery Mechanisms During Sequential Injection of Chelating Agent Solutions Into Carbonate Rocks
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012903
.
40.
Sagatov
,
E.
,
2009
, “
Pore-Level Mechanisms of Surfactant-Enhanced Oil Recovery
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans City, LA
,
Oct. 4–7
,
Paper No. SPE-136194-STU
.
41.
Barati-Harooni
,
A.
,
Najafi-Marghmaleki
,
A.
,
Hosseini
,
S. M.
, and
Moradi
,
S.
,
2017
, “
Experimental Investigation of Dynamic Adsorption–Desorption of New Nonionic Surfactant on Carbonate Rock: Application to Enhanced Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042202
.
42.
Tsai
,
D. M.
, and
Chen
,
M. F.
,
1994
, “
Curve Fitting Approach for Tangent Angle and Curvature Measurements
,”
Pattern Recognit.
,
27
(
5
), pp.
699
711
.
43.
Long
,
X. Y.
,
Wei
,
Q. C.
, and
Zheng
,
F. Y.
,
2010
, “
Dynamic Analysis of Railway Transition Curves
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
224
(
1
), pp.
1
14
.
44.
Ramakrishnan
,
T. S.
, and
Wasan
,
D. T.
,
1986
, “
Effect of Capillary Number on the Relative Permeability Function for Two-Phase Flow in Porous Media
,”
Powder Technol.
,
48
(
2
), pp.
99
124
.
45.
Arihara
,
N.
,
Yoneyama
,
T.
,
Akita
,
Y.
, and
Lu
,
X.
,
1999
, “
Oil Recovery Mechanisms of Alkali-Surfactant-Polymer Flooding
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Jakarta City, Indonesia
,
Apr. 20–22
,
Paper No. SPE-54330-MS
.
You do not currently have access to this content.