Abstract

Bitumen and heavy oil are energy resources with high viscosities, high densities, and high metals and heteroatoms content. This paper reports a bibliometric survey to investigate the historic trends and the future pattern of heavy oil and bitumen recovery and upgrading worldwide. It evaluates research outputs and their impact on the topic from 1900 to 2020. Data were extracted from Web of Science (WoS), vetted using Microsoft Excel, and visualized using VOSViewer. Globally, the study identified 8248 publications. Canada had the highest research output and was also widely cited, and the highest-productive countries are the United States from 1900 to 1970, Canada from 1971 to 2000, Canada from 2001 to 2010, and China from 2011 to 2020. The keywords frequency suggests that most research on heavy oil and bitumen focuses more on viscosity reduction, rheology, asphaltenes, enhanced oil recovery methods, and upgrading. These are the top five most productive institutions in the field: University of Calgary > China University of Petroleum > University of Alberta > Russian Academy of Sciences > China National Petroleum Corporation. The Universities of Calgary and Alberta are, however, the most frequently cited and most impactful, with respective citations and h-indexes of 10367 (50 h-index) and 8556 (47h-index). The future of heavy oil and bitumen depends on crude oil price, the economics of transportation alternatives, climate change policies and technologies, while the design of robust and low-cost catalysts would guide in-situ catalytic upgrading.

References

1.
Omajali
,
J. B.
,
Hart
,
A.
,
Walker
,
M.
,
Wood
,
J.
, and
Macaskie
,
L. E.
,
2017
, “
In-Situ Catalytic Upgrading of Heavy Oil Using Dispersed Bionanoparticles Supported on Gram-Positive and Gram-Negative Bacteria
,”
Appl. Catal. B Environ.
,
203
, pp.
807
819
.
2.
Žiković
,
S.
, and
Vlahinić-Dizdarević
,
N.
,
2011
, “
Oil Consumption and Economic Growth Interdependence in Small European Countries
,”
Econ. Res. Istraživanja
,
24
(
3
), pp.
15
32
.
3.
De Michelis
,
A.
,
Ferreira
,
T.
, and
Iacoviello
,
M.
,
2020
, “
Oil Prices and Consumption Across Countries and U.S. States
,”
Int. J. Cent. Bank.
,
16
(
2
), pp.
3
43
.
4.
Hashemi
,
R.
,
Nassar
,
N. N.
, and
Pereira Almao
,
P.
,
2014
, “
Nanoparticle Technology for Heavy Oil In-Situ Upgrading and Recovery Enhancement: Opportunities and Challenges
,”
Appl. Energy
,
133
, pp.
374
387
.
5.
Adam
,
M.
,
Anbari
,
H.
,
Hart
,
A.
,
Wood
,
J.
,
Robinson
,
J. P.
, and
Rigby
,
S. P.
,
2021
, “
In-situ Microwave-Assisted Catalytic Upgrading of Heavy Oil: Experimental Validation and Effect of Catalyst Pore Structure on Activity
,”
Chem. Eng. J.
,
413
, p.
127420
.
6.
Hart
,
A.
,
Lewis
,
C.
,
White
,
T.
,
Greaves
,
M.
, and
Wood
,
J.
,
2015
, “
Effect of Cyclohexane as Hydrogen-Donor in Ultradispersed Catalytic Upgrading of Heavy Oil
,”
Fuel Process. Technol.
,
138
, pp.
724
733
.
7.
Chen
,
Z.
, and
Yang
,
D.
,
2021
, “
Predicting Viscosities of Heavy Oils and Solvent–Heavy Oil Mixtures Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
113001
.
8.
Hart
,
A.
,
2014
, “
A Review of Technologies for Transporting Heavy Crude Oil and Bitumen via Pipelines
,”
J. Pet. Explor. Prod. Technol.
,
4
(
3
), pp.
327
336
.
9.
Li
,
Y.
,
Wang
,
Z.
,
Hu
,
Z.
,
Xu
,
B.
,
Li
,
Y.
,
Pu
,
W.
, and
Zhao
,
J.
,
2021
, “
A Review of In situ Upgrading Technology for Heavy Crude Oil
,”
Petroleum
,
7
(
2
), pp.
117
122
.
10.
Demirbas
,
A.
,
Bafail
,
A.
, and
Nizami
,
A. S.
,
2016
, “
Heavy Oil Upgrading: Unlocking the Future Fuel Supply
,”
Pet. Sci. Technol.
,
34
(
4
), pp.
303
308
.
11.
Al-Marshed
,
A.
,
Hart
,
A.
,
Leeke
,
G.
,
Greaves
,
M.
, and
Wood
,
J.
,
2015
, “
Optimization of Heavy Oil Upgrading Using Dispersed Nanoparticulate Iron Oxide as a Catalyst
,”
Energy Fuels
,
29
(
10
), pp.
6306
6316
.
12.
Shah
,
A.
,
Fishwick
,
R.
,
Wood
,
J.
,
Leeke
,
G.
,
Rigby
,
S.
, and
Greaves
,
M.
,
2010
, “
A Review of Novel Techniques for Heavy Oil and Bitumen Extraction and Upgrading
,”
Energy Environ. Sci.
,
3
(
6
), pp.
700
714
.
13.
Hart
,
A.
,
Leeke
,
G.
,
Greaves
,
M.
, and
Wood
,
J.
,
2014
, “
Downhole Heavy Crude Oil Upgrading Using CAPRI: Effect of Steam Upon Upgrading and Coke Formation
,”
Energy Fuels
,
28
(
3
), pp.
1811
1819
.
14.
Hart
,
A.
,
Wood
,
J.
, and
Greaves
,
M.
,
2017
, “
Laboratory Investigation of CAPRI Catalytic THAI-add-on Process for Heavy Oil Production and In situ Upgrading
,”
J. Anal. Appl. Pyrolysis
,
128
, pp.
18
26
.
15.
Hart
,
A.
,
Shah
,
A.
,
Leeke
,
G.
,
Greaves
,
M.
, and
Wood
,
J.
,
2013
, “
Optimization of the CAPRI Process for Heavy Oil Upgrading: Effect of Hydrogen and Guard Bed
,”
Ind. Eng. Chem. Res.
,
52
(
44
), pp.
15394
15406
.
16.
Dim
,
P.
,
Hart
,
A.
,
Wood
,
J.
,
Macnaughtan
,
B.
, and
Rigby
,
S. P.
,
2015
, “
Characterization of Pore Coking in Catalyst for Thermal Down-Hole Upgrading of Heavy Oil
,”
Chem. Eng. Sci.
,
131
, pp.
138
145
.
17.
Hart
,
A.
,
2020
, “
Microstructural Investigation of Coke Deposition in Pelleted Catalyst During Downhole Catalytic Upgrading of Heavy Crude Oil Using Porosimetry and X-Ray Computed Tomography
,”
Catal. Lett.
,
151
(
6
), pp.
1788
1795
.
18.
Pereira Almao
,
P.
,
2012
, “
In Situ Upgrading of Bitumen and Heavy Oils via Nanocatalysis
,”
Can. J. Chem. Eng.
,
90
(
2
), pp.
320
329
.
19.
Al-Marshed
,
A.
,
Hart
,
A.
,
Leeke
,
G.
,
Greaves
,
M.
, and
Wood
,
J.
,
2015
, “
Effectiveness of Different Transition Metal Dispersed Catalysts for In Situ Heavy Oil Upgrading
,”
Ind. Eng. Chem. Res.
,
54
(
43
), pp.
10645
10655
.
20.
Hart
,
A.
,
Greaves
,
M.
, and
Wood
,
J.
,
2015
, “
A Comparative Study of Fixed-Bed and Dispersed Catalytic Upgrading of Heavy Crude Oil Using-CAPRI
,”
Chem. Eng. J.
,
282
(
1-2
), pp.
213
223
.
21.
Zamani
,
A.
,
Maini
,
B.
, and
Pereira-Almao
,
P.
,
2010
, “
Experimental Study on Transport of Ultra-Dispersed Catalyst Particles in Porous Media
,”
Energy Fuels
,
24
(
9
), pp.
4980
4988
.
22.
Brown
,
A. R.
,
Hart
,
A.
,
Coker
,
V. S.
,
Lloyd
,
J. R.
, and
Wood
,
J.
,
2016
, “
Upgrading of Heavy Oil by Dispersed Biogenic Magnetite Catalysts
,”
Fuel
,
185
, pp.
442
448
.
23.
Alkhaldi
,
S.
, and
Husein
,
M. M.
,
2014
, “
Hydrocracking of Heavy Oil by Means of In situ Prepared Ultradispersed Nickel Nanocatalyst
,”
Energy Fuels
,
28
(
1
), pp.
643
649
.
24.
Alarbah
,
A.
,
Shirif
,
E.
,
Jia
,
N.
, and
Bumraiwha
,
H.
,
2021
, “
A New Approach Utilizing Liquid Catalyst for Improving Heavy Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073006
.
25.
Hart
,
A.
,
Adam
,
M.
,
Robinson
,
J. P.
,
Rigby
,
S. P.
, and
Wood
,
J.
,
2020
, “
Tetralin and Decalin H-Donor Effect on Catalytic Upgrading of Heavy Oil Inductively Heated With Steel Balls
,”
Catalysts
,
10
(
4
), p.
393
.
26.
Meng
,
X.
,
Bian
,
J.
,
Li
,
J.
,
Ma
,
Z.
,
Long
,
Q.
, and
Su
,
J.
,
2020
, “
Porous Aluminosilicates Catalysts for Low and Medium Matured Shale Oil In situ Upgrading
,”
Energy Sci. Eng.
,
8
(
8
), pp.
2859
2867
.
27.
Hart
,
A.
,
Leeke
,
G.
,
Greaves
,
M.
, and
Wood
,
J.
,
2014
, “
Down-Hole Heavy Crude oil Upgrading by CAPRI: Effect of Hydrogen and Methane Gases Upon Upgrading and Coke Formation
,”
Fuel
,
119
, pp.
226
235
.
28.
Hart
,
A.
,
Adam
,
M.
,
Robinson
,
J. P.
,
Rigby
,
S. P.
, and
Wood
,
J.
,
2020
, “
Inductive Heating Assisted-Catalytic Dehydrogenation of Tetralin as a Hydrogen Source for Downhole Catalytic Upgrading of Heavy Oil
,”
Top. Catal.
,
63
(
3–4
), pp.
268
280
.
29.
Hosseinpour
,
M.
,
Fatemi
,
S.
,
Ahmadi
,
S. J.
,
Morimoto
,
M.
,
Akizuki
,
M.
,
Oshima
,
Y.
, and
Fumoto
,
E.
,
2018
, “
The Synergistic Effect Between Supercritical Water and Redox Properties of Iron Oxide Nanoparticles for In-situ Catalyticupgrading Heavy Oil with Formic Acid. Isotopic Study
,”
Appl. Catal. B Environ.
,
230
, pp.
91
101
.
30.
Hosseinpour
,
M.
,
Soltani
,
M.
,
Noofeli
,
A.
, and
Nathwani
,
J.
,
2020
, “
An Optimization Study on Heavy Oil Upgrading in Supercritical Water Through the Response Surface Methodology (RSM)
,”
Fuel
,
271
, p.
117618
.
31.
Zhang
,
Y.
,
Yao
,
M.
,
Sun
,
G.
,
Gao
,
S.
, and
Xu
,
G.
,
2014
, “
Characteristics and Kinetics of Coked Catalyst Regeneration via Steam Gasification in a Micro Fluidized bed
,”
Ind. Eng. Chem. Res.
,
53
(
15
), pp.
6316
6324
.
32.
Donthu
,
N.
,
Kumar
,
S.
,
Mukherjee
,
D.
,
Pandey
,
N.
, and
Lim
,
W. M.
,
2021
, “
How to Conduct a Bibliometric Analysis: An Overview and Guidelines
,”
J. Bus. Res.
,
133
, pp.
285
296
.
33.
Alagumalai
,
A.
,
Mahian
,
O.
,
Aghbashlo
,
M.
,
Tabatabaei
,
M.
,
Wongwises
,
S.
, and
Wang
,
Z. L.
,
2021
, “
Towards Smart Cities Powered by Nanogenerators: Bibliometric and Machine Learning–Based Analysis
,”
Nano Energy
,
83
, p.
105844
.
34.
Tamala
,
J. K.
,
Maramag
,
E. I.
,
Simeon
,
K. A.
, and
Ignacio
,
J. J.
,
2022
, “
A Bibliometric Analysis of Sustainable Oil and Gas Production Research Using VOSviewer
,”
Clean. Eng. Technol.
,
7
, p.
100437
.
35.
Ellegaard
,
O.
, and
Wallin
,
J. A.
,
2015
, “
The Bibliometric Analysis of Scholarly Production: How Great is the Impact?
,”
Scientometrics
,
105
(
3
), pp.
1809
1831
.
36.
Khatun
,
R.
,
Xiang
,
H.
,
Yang
,
Y.
,
Wang
,
J.
, and
Yildiz
,
G.
,
2021
, “
Bibliometric Analysis of Research Trends on the Thermochemical Conversion of Plastics During 1990–2020
,”
J. Clean. Prod.
,
317
, p.
128373
.
37.
Dobson
,
S.
,
Lemphers
,
N.
, and
Guilbeault
,
S.
,
2013
, “
Booms, Busts and Bitumen: The Economic Implications of Canadian Oils and Development
,” https://www.pembina.org/reports/booms-busts-bitumen-en.pdf, Accessed October 20, 2021.
38.
Painter
,
D. S.
,
2014
, “
Oil and Geopolitics: The Oil Crises of the 1970s and the Cold War
,”
Hist. Soc. Res.
,
39
(
4
), pp.
186
208
.
39.
Campbell
,
C. J.
, and
Laherrère
,
J. H.
,
1998
, “
The End of Cheap Oil
,”
Sci. Am.
,
278
(
3
), pp.
78
83
.
40.
41.
Yermakov
,
V.
,
Henderson
,
J.
, and
Fattouh
,
B.
,
2019
, “
Russia’s Heavy Fuel Oil Exports: Challenges and Changing Rules Abroad and at Home
,” https://a9w7k6q9.stackpathcdn.com/wpcms/wp-content/uploads/2022/03/Russias-Heavy-fuel-oil-exports-challenges-andchanging-rules-at-home-and-abroad-WPM-80.pdf, Accessed September 2, 2021.
42.
Faergestad
,
I.
,
2016
, “
Heavy Oil
”,
Oil. Rev.
https//www.slb.com/-/media/files/oilfield-review/defining-heavy-oil.ashx. Accessed October 10, 2021.
43.
Pedchenko
,
L.
,
Pedchenko
,
N.
,
Manhura
,
A.
, and
Pedchenko
,
M.
,
2019
, “
Development of Natural Bitumen (Bituminous Sands) Deposits Based on the Technology of Hydraulic Mining by Boreholes
,”
E3S Web Conf.
,
123
, p.
01036
.
44.
Dusseault
,
M. B.
,
2001
, “
Comparing Venezuelan and Canadian Heavy Oil and Tar Sands
,”
Petroleum Society’s Canadian International Petroleum Conference, CIPC 2001
,
Calgary, Alberta
,
June 12–14
, pp.
1
20
, .
45.
Chan
,
G.
,
Reilly
,
J. M.
,
Paltsev
,
S.
, and
Chen
,
Y.-H. H.
,
2010
, “
Canada’s Bitumen Industry Under CO 2 Constraints
,” https://globalchange.mit.edu/publication/13706. Accessed October 21, 2021.
46.
Omoregbe
,
O.
,
Mustapha
,
A. N.
,
Steinberger-Wilckens
,
R.
,
El-Kharouf
,
A.
, and
Onyeaka
,
H.
,
2020
, “
Carbon Capture Technologies for Climate Change Mitigation: A Bibliometric Analysis of the Scientific Discourse During 1998–2018
,”
Energy Reports
,
6
, pp.
1200
1212
.
47.
Shouliang
,
Z.
,
Yitang
,
Z.
,
Wu
,
S.
,
Shangqi
,
L.
,
Li
,
X.
, and
Li
,
S.
,
2005
, “
Status of Heavy Oil Development in China
,”
Proceedings of the SPE International Thermal Operations and Heavy Oil Symposium Calgary
,
Alberta, Canada
.
48.
Hart
,
A.
,
2014
, “
The Novel THAI–CAPRI Technology and Its Comparison to Other Thermal Methods for Heavy Oil Recovery and Upgrading
,”
J. Pet. Explor. Prod. Technol.
,
4
(
4
), pp.
427
437
.
49.
Hart
,
A.
, and
Onyeaka
,
H.
,
2020
,
Chapter Carbon Capture
,
S. A.
Rehman Khan
, ed.,
IntechOpen
,
London
.
50.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E. M. A.
,
Al-Shehri
,
D.
, and
Patil
,
S.
,
2019
, “
Heavy Oil Recovery Using In Situ Steam Generated by Thermochemicals: A Numerical Simulation Study
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122903
.
51.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Elkatatny
,
S.
,
2019
, “
Well-Placement Optimization in Heavy Oil Reservoirs Using a Novel Method of In Situ Steam Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032906
.
You do not currently have access to this content.