Abstract

Smoke emissions and particulate matter (PM) size distributions were investigated on a direct-injection (DI) single-cylinder diesel engine running on both gas-to-liquid (GTL) and diesel fuels utilizing a novel spiral-helical intake manifold design. Smoke opacity was measured at a wide range of engine loads and speeds with both fuels to examine the effect of using the new manifold on smoke emissions. In addition, total PM numbers of fine particles (PM diameter ≤ 1.0 μm) and coarse particles (˃1.0 μm) were quantified with both fuels. Moreover, high-resolution transmission electron microscopy (HRTEM) images were taken with different resolutions to observe the PM sizes produced from each fuel when using the new and normal manifolds. The results showed that using the novel manifold reduced smoke emissions for both GTL and diesel fuels with about 36% at low loads and 7% at high loads. However, using the new manifold with GTL fuel showed superior performance to reduce smoke with about 60% at low loads and 10% at high loads. For the PM size distribution, the new manifold reduced total PM emissions in general. However, significant reductions were obtained with fine PM sizes (0.3–1.0 μm) when GTL fuel was used with about 30% for constant load tests, and about 40% for constant speed tests. On the other hand, the new manifold tended to increase slightly the coarse PM sizes. The HRTEM images of the PM structure for both manifolds and fuels have confirmed the above results.

References

1.
E. Union
,
Directive 2009/28/EC of the European Parliament and of the Council
,
2009
, pp.
16
62
.
2.
Eastwood
,
P.
,
2008
,
Particulate Emissions from Vehicles
.
3.
Summers
,
J. C.
,
Van Houtte
,
S.
, and
Psaras
,
D.
,
1996
, “
Simultaneous Control of Particulate and NO, Emissions From Diesel Engines
,”
Appl. Catal. B
,
10
(
96
), pp.
139
156
.
4.
Miller
,
J. W.
,
2004
, “
Emission Rates of Particulate Matter and Elemental and Organic Carbon From In-Use Diesel Engines
,”
Environ. Sci. Technol.
,
38
(
9
), pp.
2544
2550
.
5.
Berm
,
V.
,
Garc
,
A.
, and
Linares
,
W. G.
,
2011
, “
A Comprehensive Study of Particle Size Distributions With the Use of PostInjection Strategies in DI Diesel Engines
,”
Aerosol Sci. Technol.
,
45
(
10
), pp.
1161
1175
.
6.
Lu
,
T.
,
Cheung
,
C. S.
, and
Huang
,
Z.
,
2012
, “
Effects of Engine Operating Conditions on the Size and Nanostructure of Diesel Particles
,”
J. Aerosol Sci.
,
47
, pp.
27
38
.
7.
Xiao
,
H.
,
Wang
,
R.
,
Zeng
,
P.
,
Jiang
,
A.
,
Hou
,
B.
, and
Yang
,
S.
,
2017
, “
Particulate Matter and Unregulated Emissions of Diesel Engine Fueled With 2-Methylfuran Diesel Blends
,”
Fuel
,
208
, pp.
168
173
.
8.
Qian
,
Y.
,
Li
,
Z.
,
Yu
,
L.
,
Wang
,
X.
, and
Lu
,
X.
,
2019
, “
Review of the State-of-the-Art of Particulate Matter Emissions From Modern Gasoline Fueled Engines
,”
Appl. Energy
,
238
, pp.
1269
1298
.
9.
Ahmadi
,
M.
,
Wei
,
L.
,
Shun
,
C.
,
Yung
,
K.
, and
Ning
,
Z.
,
2020
, “
Particulate Emission and Physical Properties of Particulate Matter Emitted From a Diesel Engine Fueled With Ternary Fuel (Diesel-Biodiesel-Ethanol) in Blended and Fumigation Modes
,”
Fuel
,
263
, p.
116665
.
10.
Liu
,
J.
,
Liu
,
Z.
,
Wang
,
L.
,
Wang
,
P.
,
Sun
,
P.
,
Ma
,
H.
, and
Wu
,
P.
,
2021
, “
Effects of PODE/Diesel Blends on Particulate Matter Emission and Particle Oxidation Characteristics of a Common-Rail Diesel Engine
,”
Fuel Process. Technol.
,
212
, p.
106634
.
11.
Dockery
,
D. W.
, and
Pope
,
C. A.
, III
,
1994
, “
Acute Respiratory Effects of Particulate Air Pollution
,”
Annu. Rev. Public Health
,
15
(
1
), pp.
107
132
.
12.
Wichmann
,
H.
,
2007
, “
Diesel Exhaust Particles
,”
Inhalation Toxicol.
,
19
(
Suppl. 1
), pp.
241
244
.
13.
Bakke
,
B.
,
Ulvestad
,
B.
,
Stewart
,
P.
, and
Eduard
,
W.
,
2004
, “
Cumulative Exposure to Dust and Gases as Determinants of Lung Function Decline in Tunnel Construction Workers
,”
Occup. Environ. Med.
,
61
(
3
), pp.
262
269
.
14.
Kim
,
K. H.
,
Kabir
,
E.
, and
Kabir
,
S.
,
2015
, “
A Review on the Human Health Impact of Airborne Particulate Matter
,”
Environ. Int.
,
74
, pp.
136
143
.
15.
Karagulian
,
F.
,
Belis
,
C. A.
,
Dora
,
C. F. C.
,
Prüss-Ustün
,
A. M.
,
Bonjour
,
S.
,
Adair-Rohani
,
H.
, and
Amann
,
M.
,
2015
, “
Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level
,”
Atmos. Environ.
,
120
, pp.
475
483
.
16.
Xu
,
L.-Y.
,
Yin
,
H.
, and
Xie
,
X.-D.
,
2014
, “
Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment
,”
Int. J. Environ. Res. Public Health
,
11
(
12
), pp.
12368
12388
.
17.
Kontses
,
A.
,
Dimaratos
,
A.
,
Keramidas
,
C.
,
Williams
,
R.
,
Hamje
,
H.
,
Ntziachristos
,
L.
, and
Samaras
,
Z.
,
2019
, “
Effects of Fuel Properties on Particulate Emissions of Diesel Cars Equipped With Diesel Particulate Filters
,”
Fuel
,
255
, p.
115879
.
18.
Labeckas
,
G.
,
Slavinskas
,
S.
, and
Kanapkiene
,
I.
,
2017
, “
The Individual Effects of Cetane Number, Oxygen Content or Fuel Properties on Performance Efficiency, Exhaust Smoke and Emissions of a Turbocharged CRDI Diesel Engine—Part 2
,”
Energy Convers. Manage.
,
149
, pp.
442
466
.
19.
Alleman
,
T. L.
, and
Mccormick
,
R. L.
,
2003
,
Fischer-Tropsch Diesel Fuels—Properties and Exhaust Emissions: A Literature Review
,” SAE, No. 724.
20.
Clark
,
R. H.
,
Wedlock
,
D. J.
, and
Cherrillo
,
R. A.
,
2005
, “
Future Fuels and Lubricant Base Oils From Shell Gas to Liquids (GTL) Technology
,” SAE Technical Paper 2005-01-2191.
21.
Szybist
,
J. P.
,
Kirby
,
S. R.
, and
Boehman
,
L.
,
2005
, “
NOx Emissions of Alternative Diesel Fuels: A Comparative Analysis of Biodiesel and FT Diesel
,”
Energy Fuels
,
19
(
4
), pp.
1484
1492
.
22.
Uchida
,
N.
,
Hirabayashi
,
H.
,
Sakata
,
I.
,
Kitano
,
K.
,
Yoshida
,
H.
, and
Okabe
,
N.
,
2009
, “
Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
748
762
.
23.
Li
,
X.
,
Huang
,
Z.
,
Wang
,
J.
, and
Zhang
,
W.
,
2007
, “
Particle Size Distribution From a GTL Engine
,”
Sci. Total Environ.
,
382
(
2–3
), pp.
295
303
.
24.
Moon
,
G.
,
Lee
,
Y.
,
Choi
,
K.
, and
Jeong
,
D.
,
2010
, “
Emission Characteristics of Diesel, Gas to Liquid, and Biodiesel-Blended Fuels in a Diesel Engine for Passenger Cars
,”
Fuel
,
89
(
12
), pp.
3840
3846
.
25.
Soltic
,
P.
,
Edenhauser
,
D.
,
Thurnheer
,
T.
,
Schreiber
,
D.
, and
Sankowski
,
A.
,
2009
, “
Experimental Investigation of Mineral Diesel Fuel, GTL Fuel, RME and Neat Soybean and Rapeseed Oil Combustion in a Heavy Duty on-Road Engine With Exhaust Gas Aftertreatment
,”
Fuel
,
88
(
1
), pp.
1
8
.
26.
Sadeq
,
A. M.
,
Bassiony
,
M. A.
,
Elbashir
,
A. M.
,
Ahmed
,
S. F.
, and
Khraisheh
,
M.
,
2019
, “
Combustion and Emissions of a Diesel Engine Utilizing Novel Intake Manifold Designs and Running on Alternative Fuels
,”
Fuel
,
255
, p.
115769
.
27.
Prasad
,
S. L. V.
, and
Pandurangadu
,
V.
,
2011
, “
Reduction of Emissions by Intensifying Air Swirl in a Single Cylinder DI Diesel Engine With Modified Inlet Manifold
,”
Int. J. Appl. Eng. Technol.
,
1
(
1
), pp.
18
23
.
28.
Shah
,
J. V.
, and
Patel
,
P. P. D.
,
2014
, “
Experimental Analysis of Single Cylinder 4-Stroke Diesel Engine For the Performance and Emission Characteristics at Different Inclinations of the Intake Manifold
,”
Int. J. Sci. Res. Dev.
,
2
(
5
), pp.
109
113
.
29.
Li
,
X.
,
Qiao
,
Z.
,
Su
,
L.
,
Li
,
X.
, and
Liu
,
F.
,
2017
, “
The Combustion and Emission Characteristics of a Multi-Swirl Combustion System in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
115
, pp.
1203
1212
.
30.
Bassiony
,
M. A.
,
Sadiq
,
A. M.
,
Gergawy
,
M. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S. A.
,
2018
, “
Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122202
.
31.
Sambhe
,
R. U.
,
2014
, “
Effect of Swirl Induction by Internally Threaded Inlet Manifolds on Exhaust Emissions of Single Cylinder (DI) Diesel Engine
,”
Int. J. Sci. Res.
,
3
(
7
), pp.
1718
1722
.
32.
Reddy
,
P. R.
,
Rajulu
,
K. G.
, and
Naidu
,
T. V. S.
,
2014
, “
Experimental Investigation on Diesel Engines by Swirl Induction with Different Manifolds
,”
Int. J. Curr. Eng. Technol.
, (Special Issue-
2
) pp.
488
492
.
33.
Mallikarjuna
,
J. M.
, and
Krishna
,
B. M.
,
2009
, “
In-cylinder Tumble Flows in a Motored Internal Combustion Engine—Experimental Investigation Using Particle Image Velocimetry
,”
J. Inst. Eng. Mech. Eng. Div.
,
90
, pp.
29
33
.
34.
Górski
,
K.
,
Sen
,
A. K.
,
Lotko
,
W.
, and
Swat
,
M.
,
2013
, “
Effects of Ethyl-Tert-Butyl Ether (ETBE) Addition on the Physicochemical Properties of Diesel Oil and Particulate Matter and Smoke Emissions From Diesel Engines
,”
Fuel
,
103
, pp.
1138
1143
.
35.
Barrientos
,
E. J.
,
Anderson
,
J. E.
,
Maricq
,
M. M.
, and
Boehman
,
A. L.
,
2016
, “
Particulate Matter Indices Using Fuel Smoke Point for Vehicle Emissions With Gasoline, Ethanol Blends, and Butanol Blends
,”
Combust. Flame
,
167
, pp.
308
319
.
36.
Anand
,
B. P.
,
Saravanan
,
C. G.
, and
Srinivasan
,
C. A.
,
2010
, “
Performance and Exhaust Emission of Turpentine Oil Powered Direct Injection Diesel Engine
,”
Renewable Energy
,
35
(
6
), pp.
1179
1184
.
37.
Jiang
,
S.
,
Zhu
,
S.
,
Wen
,
H.
, and
Huang
,
S.
,
2012
, “
Parameter Analysis of Diesel Helical Intake Port Numerical Design
,”
Energy Procedia
,
16
(
Part A
), pp.
558
563
.
38.
Chen
,
C.
,
Yao
,
A.
,
Yao
,
C.
,
Wang
,
B.
,
Lu
,
H.
,
Feng
,
J.
, and
Feng
,
L.
,
2019
, “
Study of the Characteristics of PM and the Correlation of Soot and Smoke Opacity on the Diesel Methanol Dual Fuel Engine
,”
Appl. Therm. Eng.
,
148
(
92
), pp.
391
403
.
39.
Uchida
,
N.
,
Sakata
,
I.
,
Kitano
,
K.
,
Okabe
,
N.
, and
Sakamoto
,
Y.
,
2012
, “
Simultaneous Improvement in Both Exhaust Emissions and Fuel Consumption by Means of Fischer-Tropsch Diesel Fuels
,”
Int. J. Engine Res.
,
15
(
1
), pp.
20
36
.
40.
Abdul-Khalek
,
I.
,
Kittelson
,
D.
, and
Brear
,
F.
,
1999
, “
The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements
,”
SAE Technical Paper (724)
.
41.
Sadeq
,
A. M.
,
Ahmed
,
S. F.
, and
Sleiti
,
A. K.
,
2021
, “
Transient 3D Simulations of Turbulent Premixed Flames of Gas-to-Liquid (GTL) Fuel in a Fan-Stirred Combustion Vessel
,”
Fuel
,
291
, p.
120184
.
42.
Abdellatif
,
Y. M.
,
Saker
,
A. T.
,
Elbashir
,
A. M.
, and
Ahmed
,
S. F.
,
2021
, “
Combustion and Emissions of a Gas-to-Liquid (GTL) Diesel Engine Utilizing Optimized Spiral-Helical Intake Manifold Designs
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062308
.
43.
Sadeq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
.
44.
Samim
,
S.
,
Sadeq
,
A. M.
, and
Ahmed
,
S. F.
,
2016
, “
Measurements of Laminar Flame Speeds of GTL-Diesel Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052213
.
You do not currently have access to this content.