Abstract

Flare gas is considered a global environmental concern. Flaring contributes to wasting limited material and energy resources, economic loss, and greenhouse gas emissions. Utilizing flared gas as a fuel feed to industrial cracking furnaces grants advantages in terms of fuel economy and emissions reduction. This work presents the results obtained by ansysfluent simulation of a flare hydrocarbon gas utilized in a steam-cracking furnace of ethylene process when combusting hydrocarbons flare gas in a low-NOx burner. In addition, the study determined the suitability of different hydrocarbon fuel mixtures in satisfying the required adiabatic flame temperature. The flared stream is assumed to be inlet from both primary and secondary staged fuel burners. The simulation results illustrated the detailed temperature profiles along the furnace flue gas side. They also presented the influence of flare stream compositions and Wobbe Index (WI) on the temperature profile. It was found that having an alternative fuel with a heating value or WI similar to that of methane would not result in the same temperature profile of methane, as the current fuel source. In addition, using different excess air percentages has no linear effect on the burner’s temperature profile. However, the results showed that the best replacement of methane, as the main fuel source, is a flare mixture with the same WI of methane as well as a certain H2 content needs to be added to every flare mixture composition to reach the same temperature profile of methane.

References

1.
Eljack
,
F. T.
,
El-Halwagi
,
M. M.
, and
Xu
,
Q.
,
2014
, “
An Integrated Approach to the Simultaneous Design and Operation of Industrial Facilities for Abnormal Situation Management
,”
Comput. Aided Chem. Eng.
,
34
, pp.
771
776
.
2.
Kazi
,
M.-K.
,
Mohammed
,
F.
,
AlNouss
,
A. M. N.
, and
Eljack
,
F.
,
2015
, “
Multi-Objective Optimization Methodology to Size Cogeneration Systems for Managing Flares From Uncertain Sources During Abnormal Process Operations
,”
Comput. Chem. Eng.
,
76
, pp.
76
86
.
3.
Eljack
,
F.
, and
Kazi
,
M.-K.
,
2016
, “
Process Safety and Abnormal Situation Management
,”
Curr. Opin. Chem. Eng.
,
14
, pp.
35
41
.
4.
Kazi
,
M.-K.
,
Eljack
,
F.
,
Elsayed
,
N. A.
, and
El-Halwagi
,
M. M.
,
2016
, “
Integration of Energy and Wastewater Treatment Alternatives With Process Facilities To Manage Industrial Flares During Normal and Abnormal Operations: Multiobjective Extendible Optimization Framework
,”
Ind. Eng. Chem. Res.
,
55
(
7
), pp.
2020
2034
.
5.
Kazi
,
M.-K.
,
Eljack
,
F.
, and
Kazantzi
,
V.
,
2017
, “Managing Uncertain Industrial Flares During Abnormal Process Operations Using an Integrated Optimization and Monte Carlo Simulation Approach,”
Computer Aided Chemical Engineering
, Vol.
40
,
A.
Espuña
,
M.
Graells
, and
L.
Puigjaner
, eds.,
Elsevier
, pp.
2425
2430
.
6.
Kazi
,
M.-K.
,
Eljack
,
F.
,
Al-Sobhi
,
S. A.
,
Kazantzis
,
N.
, and
Kazantzi
,
V.
,
2019
, “Process Dynamic Analysis and Control Strategy for COGEN Option Used for Flare Utilization,”
Computer Aided Chemical Engineering
, Vol.
46
,
A. A.
Kiss
,
E.
Zondervan
,
R.
Lakerveld
, and
L.
Özkan
, eds.,
Elsevier
, pp.
1255
1260
.
7.
Kazi
,
M.-K.
,
Eljack
,
F.
,
Al-Sobhi
,
S. A.
,
Kazantzis
,
N.
, and
Kazantzi
,
V.
,
2019
, “
Application of i-SDT for Safer Flare Management Operation
,”
Process Saf. Environ. Prot.
,
132
, pp.
249
264
.
8.
The World Bank
,
2017
New Gas Flaring Data Shows Mixed Results
,” http://www.worldbank.org/en/news/feature/2017/07/10/new-gas-flaring-data-shows-mixed-results
9.
Mohammed
,
F. M.
,
Kazi
,
M.-K.
,
AlNouss
,
A. M.
, and
Eljack
,
F. T.
,
2014
, “
Tracking of GHG Emissions and Tax Implication During Normal/Abnormal Situations—Ethylene Process Base Case Industrial Application
,”
Proceedings of the 4th International Gas Processing Symposium
,
October
,
Elsevier
,
Oxford
, pp.
251
260
.
10.
United Nations
, “
Kyoto Protocol
,” http://unfccc.int/kyoto_protocol/items/2830.php
11.
IPPC Secretariat
,
2013
, “
IPCC Factsheet: What Is the IPCC?
,” In Switzerland.
12.
The World Bank
,
2017
, “
Zero Routine Flaring by 2030
,” http://www.worldbank.org/en/programs/zero-routine-flaring-by-2030#1
13.
United Nations Framework Convention on Climate Change The Paris Agreement
,” http://unfccc.int/paris_agreement/items/9485.php
14.
AlGhanim
,
N.
,
Khraisheh
,
M.
, and
Benyahia
,
F.
,
2012
, “
Flare Reduction Options and Simulation for the Qatari Oil and Gas Industry
,”
Proceedings of the 3rd Gas Processing Symposium
,
October
,
Elsevier
,
Oxford
, Vol. 3, pp.
7
14
.
15.
The World Bank
, “
Global Gas Flaring Reduction Partnership (GGFR)
,” http://www.worldbank.org/en/programs/gasflaringreduction#4
16.
United Nations Framework Convention on Climate Change Status of Ratification of the Kyoto Protocol
,” http://unfccc.int/kyoto_protocol/status_of_ratification/items/2613.php
17.
United Nations Framework Convention on Climate Change Paris Agreement—Status of Ratification
,” http://unfccc.int/paris_agreement/items/9444.php
18.
Raja
,
M.
,
Bawazir
,
I.
,
Abdelmohsen
,
I.
,
Bashir
,
K.
, and
Al-Sulaiti
,
K. A.
,
2015
, “
Qatar Gas Flare Reduction Program A2—Al-Marri, Mohammed J
,”
Proceedings of the 4th International Gas Processing Symposium
,
F. T.
Eljack
, ed.,
Elsevier
,
Oxford
, pp.
261
271
.
19.
Rahimpour
,
M. R.
, and
Jokar
,
S. M.
,
2012
, “
Feasibility of Flare Gas Reformation to Practical Energy in Farashband Gas Refinery: No Gas Flaring
,”
J. Hazard. Mater.
,
209–210
(
0
), pp.
204
217
.
20.
Emam
,
E. A.
,
2015
, “
Gas Flaring in Industry: An Overview
,”
Pet. Coal
,
57
(
5
), pp.
532
555
.
21.
Abdulrahman
,
A. O.
,
Huisingh
,
D.
, and
Hafkamp
,
W.
,
2015
, “
Sustainability Improvements in Egypt's Oil & Gas Industry by Implementation of Flare Gas Recovery
,”
J. Cleaner Prod.
,
98
, pp.
116
122
.
22.
Baukal
,
C. E.
, Jr.
,
2003
, “Introduction,”
Industrial Burners Handbook
, Vol.
1
,
C. E.
Baukal
, Jr.
, ed.,
CRC Press
,
Boca Raton, FL
.
23.
Jenkins
,
S.
,
2016
, “
Burner Inspection and Maintenance
,”
Chem. Eng.
, p.
32
.
24.
Waibel
,
R. T.
,
Claxton
,
M. G.
, and
Reese
,
B.
,
2012
, “Burner Design,”
The John Zink Hamworthy Combustion Handbook: Vol 2. Design and Operations
,
C. E.
Baukal
, Jr.
, ed.,
CRC Press
,
Boca Raton, FL
.
25.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p. 032209.
26.
Sadiq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p. 080801.
27.
Abdellatif
,
Y. M.
,
Saker
,
A. T.
,
Elbashir
,
A. M.
, and
Ahmed
,
S. F.
,
2021
, “
Combustion and Emissions of a Gas-to-Liquid (GTL) Diesel Engine Utilizing Optimized Spiral-Helical Intake Manifold Designs
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062308
.
28.
Elbashir
,
A. M.
,
Saker
,
A. T.
, and
Ahmed
,
S. F.
,
2022
, “
Effect of Utilizing a Novel Intake Manifold Design on Smoke Emissions and Particulate Size Distributions of a Gas-to-Liquid (GTL) Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022301
.
29.
Sadeq
,
A. M.
,
Ahmed
,
S. F.
, and
Sleiti
,
A. K.
,
2021
, “
Transient 3D Simulations of Turbulent Premixed Flames of Gas-to-Liquid (GTL) Fuel in a Fan-Stirred Combustion Vessel
,”
Fuel
,
291
, p.
120184
.
30.
Erazo
,
J. A.
, Jr.
, and
Korb
,
T. M.
,
2012
, “Burner Testing,”
The John Zink Hamworthy Combustion Handbook: Vol 2. Design and Operations
,
J.
Baukal
, ed.,
CRC Press
.
31.
Steve Londerville
,
J. C.
, and
Baukal
,
C. E.
, Jr.
,
2012
, “Combustion Fundamentals,”
The John Zink Hamworthy Combustion Handbook: Vol 1. Fundamentals
,
C. E.
Baukal
, Jr.
, ed.,
CRC Press
,
Boca Raton, FL
.
32.
Smith
,
J. D.
,
Hixson
,
E. M.
, and
Eldredge
,
T.
,
2003
, “CFD in Burner Development,”
Industrial Burners Handbook
, Vol.
1
,
C. E.
Baukal
, ed.,
CRC Press
,
Boca Raton, FL
.
33.
Kamrava
,
S.
,
Gabriel
,
K. J.
,
El-Halwagi
,
M. M.
, and
Eljack
,
F. T.
,
2015
, “
Managing Abnormal Operation Through Process Integration and Cogeneration Systems
,”
Clean Technol. Environ. Policy
,
17
(
1
), pp.
119
128
.
34.
Jokar
,
S. M.
,
Rahimpour
,
M. R.
, and
Shariati
,
A.
,
2016
, “
Heat Exchanger Application for Environmental Problem-Reducing in Flare Systems of an Oil Refinery and a Petrochemical Plant: Two Case Studies
,”
Appl. Therm. Eng.
,
106
, pp.
796
810
.
35.
Liu
,
B.
,
Bao
,
B.
,
Wang
,
Y.
, and
Xu
,
H.
,
2017
, “
Numerical Simulation of Flow, Combustion and NO Emission of a Fuel-Staged Industrial Gas Burner
,”
J. Energy Inst.
,
90
(
3
), pp.
441
445
.
36.
Liu
,
B.
,
Hong
,
X.
, and
Yuan-Hua
,
W.
,
2016
, “
Numerical Study of the Effect of Staged Gun and Quarl on the Performance of Low-NOx Burners
,”
J. Energy Eng.
,
142
(
3
), p. 04015040.
37.
ANSYS, I
,
2017
,
ANSYS Help Viewer
,
17
.
38.
Kim
,
M. Y.
, and
Baek
,
S. W.
,
2005
, “
Modeling of Radiative Heat Transfer in an Axisymmetric Cylindrical Enclosure With Participating Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
90
(
3
), pp.
377
388
.
39.
Directive 2007/589/EC
.
In Official Journal of the European Union, Commission Decision of 18 July 2007 Establishing Guidelines for the Monitoring and Reporting of Greenhouse Gas Emissions Pursuant to Directive 2003/87/EC of the European Parliament and of the Council: 2007
; Vol.
50
, p
85
.
40.
Eggleston
,
S.
,
Buendia
,
L.
,
Miwa
,
K.
,
Ngara
,
T.
, and
Tanabe
,
K.
,
2006
, “
2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC): Japan
.”
You do not currently have access to this content.