Abstract

Young's modulus is a principle geomechanical property that reflects the material stiffness. Good knowledge about rock mechanical properties significantly facilitates fracturing design and in situ stresses estimation. Conventionally, rock elastic properties are estimated either experimentally or using well log data, known as static and dynamic, respectively. Conducting experiments on core samples is costly, time consuming, and does not provide continuous information. While dynamic Young's modulus provides a complete profile, however, it needs the availability of acoustic logs, and its estimations differ from the static values. The objective of this article is to create a continuous profile of Young's modulus using the drilling rig sensors records. The presented approach relies on the fact that the drilling data such as drill pipe torque, weight on bit, and rate of penetration are available at an early stage without additional cost. Three machine learning algorithms were used to correlate the drilling data with Young's modulus: random forest, adaptive neuro-fuzzy inference system, and functional network. Two different datasets were used in this study, one construct and test the model, while the other was hidden from the algorithms and used later to validate the built models. The two datasets contain over 3900 data points and cover different types of rocks. Two out of the three methods utilized yielded a remarkable match between the given and the predicted values. The correlation coefficients ranged between 0.92 and 0.99 average absolute percentage errors were less than 13%. Supported by these results, the utilization of drilling data and artificial intelligence techniques to predict the elastic moduli is promising. This approach could be investigated for other geomechanical properties, besides the performance of other machine learning methods for the same purpose.

References

1.
Labudovic
,
V.
,
1984
, “
The Effect of Poisson’s Ratio on Fracture Height
,”
J. Pet. Technol.
,
36
(
2
), pp.
287
290
.
2.
Kumar
,
J.
,
1976
, “
The Effect of Poisson’s Ratio on Rock Properties
,”
SPE Annual Fall Technical Conference And Exhibition
,
New Orleans, LA
,
Oct. 3–6
, p.
12
.
3.
Nes
,
O.-M.
,
Fjær
,
E.
,
Tronvoll
,
J.
,
Kristiansen
,
T. G.
, and
Horsrud
,
P.
,
2005
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 23–25
, p.
7
.
4.
Hammah
,
R.
,
Curran
,
J.
, and
Yacoub
,
T.
,
2006
, “
The Influence of Young’s Modulus on Stress Modelling Results
,”
Golden Rocks 2006, the 41st U.S. Symposium on Rock Mechanics
,
Golden, CO
,
June 17–21
, p.
5
.
5.
Fjar
,
E.
,
Holt
,
R. M.
,
Raaen
,
A. M.
, and
Horsrud
,
P.
,
2008
,
Petroleum Related Rock Mechanics
, Vol.
53
,
Elsevier Science
,
Amsterdam, The Netherlands
.
6.
Barree
,
R. D.
,
Gilbert
,
J. V.
, and
Conway
,
M.
,
2009
, “
Stress and Rock Property Profiling for Unconventional Reservoir Stimulation
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 19–21
, p.
18
.
7.
Lashkaripour
,
G. R.
,
2002
, “
Predicting Mechanical Properties of Mudrock From Index Parameters
,”
Bull. Eng. Geol. Environ.
,
61
(
1
), pp.
73
77
.
8.
Karagianni
,
A.
,
Karoutzos
,
G.
,
Ktena
,
S.
,
Vagenas
,
N.
,
Vlachopoulos
,
I.
,
Sabatakakis
,
N.
, and
Koukis
,
G.
,
2017
, “
Elastic Properties of Rocks
,”
Bull. Geol. Soc. Greece
,
43
(
3
), p.
1165
.
9.
Mahmoud
,
M.
,
Elkatatny
,
S.
,
Ramadan
,
E.
, and
Abdulraheem
,
A.
,
2016
, “
Development of Lithology-Based Static Young’s Modulus Correlations From Log Data Based on Data Clustering Technique
,”
J. Pet. Sci. Eng.
,
146
(
1
), pp.
10
20
.
10.
Horsrud
,
P.
,
2001
, “
Estimating Mechanical Properties of Shale From Empirical Correlations
,”
SPE Drill. Complet.
,
16
(
2
), pp.
68
73
.
11.
Najibi
,
A. R.
,
Ghafoori
,
M.
,
Lashkaripour
,
G. R.
,
Asef
,
M. R.
,
Reza
,
A.
,
Ghafoori
,
M.
, and
Reza
,
G.
,
2015
, “
Empirical Relations Between Strength and Static and Dynamic Elastic Properties of Asmari and Sarvak Limestones, Two Main Oil Reservoirs in Iran
,”
J. Pet. Sci. Eng.
,
126
(
1
), pp.
78
82
.
12.
King
,
M. S.
,
1983
, “
Static and Dynamic Elastic Properties of Rocks From the Canadian Shield
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
20
(
5
), pp.
237
241
.
13.
Heerden
,
W. L.
,
1987
, “
General Relations Between Static and Dynamic Moduli of Rocks
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
24
(
6
), pp.
381
385
.
14.
Eissa
,
E. A.
, and
Kazi
,
A.
,
1988
, “
Relation Between Static and Dynamic Young’s Moduli of Rocks
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
25
(
6
), pp.
479
482
.
15.
Christaras
,
B.
,
Auger
,
F.
, and
Mosse
,
E.
,
1994
, “
Determination of the Moduli of Elasticity of Rocks. Comparison of the Ultrasonic Velocity and Mechanical Resonance Frequency Methods With Direct Static Methods
,”
Mater. Struct.
,
27
(
4
), pp.
222
228
.
16.
Lacy
,
L. L.
,
1997
, “
Dynamic Rock Mechanics Testing for Optimized Fracture Designs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 5–8
, p.
14
.
17.
Bradford
,
I. D. R.
,
Fuller
,
J.
,
Thompson
,
P. J.
, and
Walsgrove
,
T. R.
,
1998
, “
Benefits of Assessing the Solids Production Risk in a North Sea Reservoir Using Elastoplastic Modelling
,”
SPE/ISRM Rock Mechanics in Petroleum Engineering
,
Trondheim, Norway
,
July 8–10
, p.
9
.
18.
Ohen
,
H. A.
,
2003
, “
Calibrated Wireline Mechanical Rock Properties Model for Predicting and Preventing Wellbore Collapse and Sanding
,”
SPE European Formation Damage Conference
,
The Hague, The Netherlands
,
May 13–14
, p.
18
.
19.
Ameen
,
M. S.
,
Smart
,
B. G. D.
,
Somerville
,
J. M.
,
Hammilton
,
S.
, and
Naji
,
N. A.
,
2009
, “
Predicting Rock Mechanical Properties of Carbonates From Wireline Logs (A Case Study: Arab-D Reservoir, Ghawar Field, Saudi Arabia)
,”
Mar. Pet. Geol.
,
26
(
4
), pp.
430
444
.
20.
Canady
,
W. J.
,
2011
, “
A Method for Full-Range Young’s Modulus Correction
,”
North American Unconventional Gas Conference and Exhibition
,
The Woodlands, TX
,
June 14–16
, p.
6
.
21.
Martínez-Martínez
,
J.
,
Benavente
,
D.
, and
García-del-Cura
,
M. A.
,
2012
, “
Comparison of the Static and Dynamic Elastic Modulus in Carbonate Rocks
,”
Bull. Eng. Geol. Environ.
,
71
(
2
), pp.
263
268
.
22.
Brotons
,
V.
,
Tomás
,
R.
,
Ivorra
,
S.
, and
Grediaga
,
A.
,
2014
, “
Relationship Between Static and Dynamic Elastic Modulus of Calcarenite Heated at Different Temperatures: The San Julián’s Stone
,”
Bull. Eng. Geol. Environ.
,
73
(
3
), pp.
791
799
.
23.
Brotons
,
V.
,
Tomás
,
R.
,
Ivorra
,
S.
,
Grediaga
,
A.
,
Martínez-Martínez
,
J.
,
Benavente
,
D.
, and
Gómez-Heras
,
M.
,
2016
, “
Improved Correlation Between the Static and Dynamic Elastic Modulus of Different Types of Rocks
,”
Mater. Struct.
,
49
(
8
), pp.
3021
3037
.
24.
Sharifi
,
J.
,
Mirzakhanian
,
M.
, and
Mondol
,
N. H.
,
2017
, “
Proposed Relationships Between Dynamic and Static Young Modulus of a Weak Carbonate Reservoir Using Laboratory Tests
,”
4th International Workshop on Rock Physics
,
Trondheim, Norway
,
May 29–June 2
, pp.
27
29
.
25.
Asef
,
M. R.
, and
Farrokhrouz
,
M.
,
2017
, “
A Semi-Empirical Relation Between Static and Dynamic Elastic Modulus
,”
J. Pet. Sci. Eng.
,
157
(
1
), pp.
359
363
.
26.
Ghafoori
,
M.
,
Rastegarnia
,
A.
, and
Lashkaripour
,
G. R.
,
2018
, “
Estimation of Static Parameters Based on Dynamical and Physical Properties in Limestone Rocks
,”
J. African Earth Sci.
,
137
(
1
), pp.
22
31
.
27.
Feng
,
C.
,
Wang
,
Z.
,
Deng
,
X.
,
Fu
,
J.
,
Shi
,
Y.
,
Zhang
,
H.
, and
Mao
,
Z.
,
2019
, “
A New Empirical Method Based on Piecewise Linear Model to Predict Static Poisson’s Ratio via Well Logs
,”
J. Pet. Sci. Eng.
,
175
(
1
), pp.
1
8
.
28.
Khaksar Manshad
,
A.
,
Rostami
,
H.
,
Moein Hosseini
,
S.
, and
Rezaei
,
H.
,
2016
, “
Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
29.
Moussa
,
T.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2018
, “
Development of New Permeability Formulation From Well Log Data Using Artificial Intelligence Approaches
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072903
.
30.
Abdelgawad
,
K.
,
Elkatatny
,
S.
,
Moussa
,
T.
,
Mahmoud
,
M.
, and
Patil
,
S.
,
2019
, “
Real-Time Determination of Rheological Properties of Spud Drilling Fluids Using a Hybrid Artificial Intelligence Technique
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032908
.
31.
Van
,
S. L.
, and
Chon
,
B. H.
,
2018
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
32.
Elkatatny
,
S.
,
2018
, “
Application of Artificial Intelligence Techniques to Estimate the Static Poisson’s Ratio Based on Wireline Log Data
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072905
.
33.
Abdulraheem
,
A.
,
Ahmed
,
M.
,
Vantala
,
A.
, and
Parvez
,
T.
,
2009
, “
Prediction of Rock Mechanical Parameters for Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques
,”
SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition
,
Al-Khobar, Saudi Arabia
,
May 9–11
, p.
11
. doi:
34.
Al-anazi
,
B. D.
,
Algarni
,
M. T.
,
Tale
,
M.
, and
Almushiqeh
,
I.
,
2011
, “
Prediction of Poisson’s Ratio and Young’s Modulus for Hydrocarbon Reservoirs Using Alternating Conditional Expectation Algorithm
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Sept. 25–28
, p.
9
. doi:
35.
Tariq
,
Z.
,
Elkatatny
,
S.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
,
Abdelwahab
,
A. Z.
, and
Woldeamanuel
,
M.
,
2017
, “
Estimation of Rock Mechanical Parameters Using Artificial Intelligence Tools
,”
51st U.S. Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 25–28
, p.
11
.
36.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
, and
Mohamed
,
I.
,
2019
, “
An Integrated Approach for Estimating Static Young's Modulus Using Artificial Intelligence Tools
,”
Neural Comput. Appl.
,
31
(
8
), pp.
4123
4135
.
37.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Ali
,
A.
, and
Moussa
,
T.
,
2019
, “
Estimation of Static Young’s Modulus for Sandstone Formation Using Artificial Neural Networks
,”
Energies
,
12
(
11
), p.
2125
.
38.
Jorden
,
J. R.
, and
Shirley
,
O. J.
,
1966
, “
Application of Drilling Performance Data to Overpressure Detection
,”
J. Pet. Technol.
,
18
(
11
), pp.
1387
1394
.
39.
Rehm
,
B.
, and
McClendon
,
R.
,
1971
, “
Measurement of Formation Pressure From Drilling Data
,”
Fall Meeting of the Society of Petroleum Engineers of AIME
,
New Orleans, LA
,
Oct. 3–6
, p.
11
.
40.
Gowida
,
A.
, and
Elkatatny
,
S.
,
2020
, “
Prediction of Sonic Wave Transit Times From Drilling Parameters While Horizontal Drilling in Carbonate Rocks Using Neural Networks
,”
Petrophysics
,
61
(
5
), pp.
482
494
.
41.
Gowida
,
A.
,
Elkatatny
,
S.
,
Al-afnan
,
S.
, and
Abdulraheem
,
A.
,
2020
, “
New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling
,”
Sustainability
,
12
(
2
), p.
686
.
42.
Jang
,
J.-S. R.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man. Cybern.
,
23
(
3
), pp.
665
685
.
43.
Jang
,
J.S. R.
,
1991
, “
Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm
,”
9th National Conference on Artificial Intelligence
,
CA
,
July 14–19
, pp.
762
767
.
44.
Tahmasebi
,
P.
, and
Hezarkhani
,
A.
,
2012
, “
A Hybrid Neural Networks-Fuzzy Logic-Genetic Algorithm for Grade Estimation
,”
Comput. Geosci.
,
42
(
1
), pp.
18
27
.
45.
Abraham
,
A.
,
2005
, “Adaptation of Fuzzy Inference System Using Neural Learning,”
Fuzzy Systems Engineering. Studies in Fuzziness and Soft Computing
,
N.
Nedjah
and
L.
Macedo Mourelle
, eds., Vol.
181
,
Springer
,
Berlin, Heidelberg
, pp.
53
83
.
46.
Tariq
,
Z.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2019
, “
Method for Estimating Permeability in Carbonate Reservoirs From Typical Logging Parameters Using Functional Network
,”
U.S. Rock Mechanics/Geomechanics Symposium
, p.
6
.
47.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of a New Correlation for Bubble Point Pressure in Oil Reservoirs Using Artificial Intelligent Technique
,”
Arab. J. Sci. Eng.
,
43
(
5
), pp.
2491
2500
.
48.
Elkatatny
,
S.
, and
Mahmoud
,
M.
,
2018
, “
Development of new Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique
,”
Petroleum
,
4
(
2
), pp.
178
186
.
49.
Shahriar
,
K.
, and
Owladeghaffari
,
H.
,
2007
, “
Analysis of Permeability Using BPF, ANFIS & SOM
,”
1st Canada—U.S. Rock Mechanics/Geomechanics Symposium
,
Vancouver, Canada
,
May 27–31
, p.
5
.
50.
Castillo
,
E.
,
1998
, “
Functional Networks
,”
Neural Process. Lett.
,
7
(
3
), pp.
151
159
.
51.
Castillo
,
E.
,
Cobo
,
A.
,
Gutiérrez
,
J. M.
, and
Pruneda
,
R. E.
,
1999
,
Functional Networks with Applications
,
Springer
,
Boston, MA
.
52.
Castillo
,
E.
,
Gutiérrez
,
J. M.
,
Hadi
,
A. S.
, and
Lacruz
,
B.
,
2001
, “
Some Applications of Functional Networks in Statistics and Engineering
,”
Technometrics
,
43
(
1
), pp.
10
24
.
53.
Castillo
,
E.
,
Cobo
,
A.
,
Gutiérrez
,
J. M.
, and
Pruneda
,
E.
,
2000
, “
Functional Networks: A New Network-Based Methodology
,”
Comput. Civ. Infrastruct. Eng.
,
15
(
2
), pp.
90
106
.
54.
Elkatatny
,
S.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulazeez
,
A.
, and
Mohamed
,
I. M.
,
2016
, “
Application of Artificial Intelligent Techniques to Determine Sonic Time From Well Logs
,”
50th US Rock Mechanics/Geomechanics Symposium
,
Houston, TX
,
June 26–29
, p.
11
.
55.
Ahmed
,
A.
,
Elkatatny
,
S.
,
Abdulraheem
,
A.
,
Mahmoud
,
M.
,
Ali
,
A. Z.
, and
Mohamed
,
I. M.
,
2018
, “
New Approach to Predict Fracture Pressure Using Functional Networks
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, p.
12
.
56.
Tariq
,
Z.
,
Mahmoud
,
M. A.
,
Abdulraheem
,
A.
, and
Al-Shehri
,
D. A.
,
2018
, “
On Utilizing Functional Network to Develop Mathematical Model for Poisson’s Ratio Determination
,”
52nd US Rock Mechanics/Geomechanics Symposium
,
Seattle, WA
,
June 17–20
, p.
6
.
57.
Tariq
,
Z.
,
2018
, “
An Intelligent Functional Network Approach to Develop Mathematical Model to Predict Sonic Waves Travel Time for Carbonate Rocks
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam, Saudi Arabia
,
Apr. 23–26
, p.
16
.
58.
Tariq
,
Z.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
,
Al-Shehri
,
D.
,
Khan
,
M. R.
, and
Janjua
,
A. N.
,
2018
, “
An Intelligent Solution To Forecast Pressure Drop in a Vertical Well Having Multiphase Flow Using Functional Network Technique
,”
PAPG/SPE Pakistan Section Annual Technical Conference and Exhibition
,
Islamabad, Pakistan
,
Dec. 10–12
, p.
10
.
59.
Mahmoud
,
A. A.
,
Elkatatny
,
S.
,
Alsabaa
,
A.
, and
Shehri
,
D.
,
2020
, “
Al Functional Neural Networks-Based Model for Prediction of the Static Young’s Modulus for Sandstone Formations
,”
54th US Rock Mechanics/Geomechanics Symposium
,
Online
,
June 28–July 1
(physical event cancelled)
.
60.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
61.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of the 3rd International Conference on Document Analysis and Recognition
,
Montreal, QC, Canada
,
Aug. 14–16
, Vol.
1
, pp.
278
282
.
62.
Kleinberg
,
E. M.
,
1996
, “
An Overtraining-Resistant Stochastic Modeling Method for Pattern Recognition
,”
Ann. Stat.
,
24
(
6
), pp.
2319
2349
.
63.
Kleinberg
,
E. M.
,
2000
, “
On the Algorithmic Implementation of Stochastic Discrimination
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
5
), pp.
473
490
.
64.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning
(Springer Series in Statistics),
Springer
,
New York
.
65.
Kim
,
Y.
,
Hardisty
,
R.
,
Torres
,
E.
, and
Marfurt
,
K. J.
,
2018
, “
Seismic Facies Classification Using Random Forest Algorithm
,”
2018 SEG International Exposition and Annual Meeting
,
Anaheim, CA
,
Oct. 14–19
, p.
5
.
66.
Hegde
,
C.
,
Wallace
,
S.
, and
Gray
,
K.
,
2015
, “
Using Trees, Bagging, and Random Forests to Predict Rate of Penetration During Drilling
,”
SPE Middle East Intelligent Oil and Gas Conference and Exhibition
,
Abu Dhabi, UAE
,
Sept. 15–16
, p.
12
.
67.
Nasir
,
E.
, and
Rickabaugh
,
C.
,
2018
, “
Optimizing Drilling Parameters Using a Random Forests ROP Model in the Permian Basin
,”
SPE Liquids-Rich Basins Conference—North America
,
Midland, TX
,
Sept. 5–6
, p.
13
.
68.
Sun
,
Y.
,
Ma
,
G.
,
Wang
,
L.
,
Zhang
,
F.
,
Li
,
X.
, and
Mei
,
L.
,
2019
, “
Organic-Matter Content Prediction Based on the Random Forest Algorithm: Application to a Lower Silurian Shale-Gas Reservoir
,”
SEG Annual Meeting and International Exhibition
,
San Antonio, TX
,
Sept. 15–20
, p.
5
.
You do not currently have access to this content.