Abstract

Nontrivial initial water and the indispensable hydraulic fracturing technique for enhanced recovery result in the prevalence of oil–water two-phase flow in shale oil reservoirs. However, limited research has focused on their presumably unique flow characteristics so far. In this paper, based on assumptions about the two-phase distribution pattern, the relative permeability models for organic/inorganic pores are established. Then, the two models are combined by an upscaling model to arrive at the expression for the relative permeability of shale rocks. Effects of total organic carbon (TOC), pore size, and slip length are considered. Sensitivity analysis demonstrates their impacts on the relative permeability of inorganic/organic media and the shale rock. This is the very first work that provides an analytical relative permeability model for the oil/water two-phase flow in shale matrix considering the effect of kerogen, and it is important for understanding the performance of shale oil reservoirs and other kinds of nanoporous media.

References

1.
Sanaei
,
A.
,
Ma
,
Y.
, and
Jamili
,
A.
,
2019
, “
Nanopore Confinement and Pore Connectivity Considerations in Modeling Unconventional Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012904
.
2.
Curtis
,
J. B.
,
2002
, “
Fractured Shale-Gas Systems
,”
Am. Assoc. Pet. Geol. Bull.
,
86
(
11
), pp.
1921
1938
.
3.
Wang
,
W.
,
Fan
,
D.
,
Sheng
,
G.
,
Chen
,
Z.
, and
Su
,
Y.
,
2019
, “
A Review of Analytical and Semi-Analytical Fluid Flow Models for Ultra-Tight Hydrocarbon Reservoirs
,”
Fuel
,
256
, p.
115737
.
4.
Wang
,
S.
,
Javadpour
,
F.
, and
Feng
,
Q.
,
2016
, “
Fast Mass Transport of Oil and Supercritical Carbon Dioxide Through Organic Nanopores in Shale
,”
Fuel
,
181
, pp.
741
758
.
5.
Wang
,
S.
,
Javadpour
,
F.
, and
Feng
,
Q.
,
2016
, “
Molecular Dynamics Simulations of Oil Transport Through Inorganic Nanopores in Shale
,”
Fuel
,
171
, pp.
74
86
.
6.
Zhang
,
T.
,
Li
,
X.
,
Yin
,
Y.
,
He
,
M.
,
Liu
,
Q.
,
Huang
,
L.
, and
Shi
,
J.
,
2019
, “
The Transport Behaviors of Oil in Nanopores and Nanoporous Media of Shale
,”
Fuel
,
242
, pp.
305
315
.
7.
Zhao
,
J.
,
Kang
,
Q.
,
Yao
,
J.
,
Zhang
,
L.
,
Li
,
Z.
,
Yang
,
Y.
, and
Sun
,
H.
,
2018
, “
Lattice Boltzmann Simulation of Liquid Flow in Nanoporous Media
,”
Int. J. Heat Mass Transf.
,
125
, pp.
1131
1143
.
8.
Yang
,
Y.
,
Wang
,
K.
,
Zhang
,
L.
,
Sun
,
H.
,
Zhang
,
K.
, and
Ma
,
J.
,
2019
, “
Pore-Scale Simulation of Shale Oil Flow Based on Pore Network Model
,”
Fuel
,
251
, pp.
683
692
.
9.
Feng
,
Q.
,
Xu
,
S.
,
Wang
,
S.
,
Li
,
Y.
,
Gao
,
F.
, and
Xu
,
Y.
,
2019
, “
Apparent Permeability Model for Shale Oil With Multiple Mechanisms
,”
J. Pet. Sci. Eng.
,
175
, pp.
814
827
.
10.
Zhang
,
T.
,
Li
,
X.
,
Shi
,
J.
,
Sun
,
Z.
,
Yin
,
Y.
,
Wu
,
K.
,
Li
,
J.
, and
Feng
,
D.
,
2018
, “
An Apparent Liquid Permeability Model of Dual-Wettability Nanoporous Media: A Case Study of Shale
,”
Chem. Eng. Sci.
,
187
, pp.
280
291
.
11.
Cui
,
J.
,
Cheng
,
L.
, and
Li
,
L.
,
2018
, “
Apparent Permeability and Representative Size of Shale: A Numerical Study on the Effects of Organic Matter
,”
Comput. Geosci.
,
22
, p.
4
.
12.
Cui
,
J.
,
Sang
,
Q.
,
Li
,
Y.
,
Yin
,
C.
,
Li
,
Y.
, and
Dong
,
M.
,
2017
, “
Liquid Permeability of Organic Nanopores in Shale: Calculation and Analysis
,”
Fuel
,
202
, pp.
426
434
.
13.
Zhang
,
Q.
,
Su
,
Y.
,
Wang
,
W.
,
Lu
,
M.
, and
Sheng
,
G.
,
2017
, “
Apparent Permeability for Liquid Transport in Nanopores of Shale Reservoirs: Coupling Flow Enhancement and Near Wall Flow
,”
Int. J. Heat Mass Transf.
,
115
, pp.
224
234
.
14.
Cui
,
J.
,
2019
, “
Oil Transport in Shale Nanopores and Micro-Fractures: Modeling and Analysis
,”
J. Pet. Sci. Eng.
,
178
, pp.
640
648
.
15.
Cui
,
J.
,
2019
, “
Pre-Darcy Flow in Shales: Effects of the Rate-Dependent Slip
,”
J. Pet. Sci. Eng.
,
183
, p.
106393
.
16.
Sun
,
F.
,
Yao
,
Y.
,
Li
,
G.
,
Zhang
,
S.
,
Xu
,
Z.
,
Shi
,
Y.
, and
Li
,
X.
,
2019
, “
A Slip-Flow Model for Oil Transport in Organic Nanopores
,”
J. Pet. Sci. Eng.
,
172
, pp.
139
148
.
17.
Wang
,
H.
,
Su
,
Y.
,
Zhao
,
Z.
,
Wang
,
W.
,
Sheng
,
G.
, and
Zhan
,
S.
,
2019
, “
Apparent Permeability Model for Shale Oil Transport Through Elliptic Nanopores Considering Wall-Oil Interaction
,”
J. Pet. Sci. Eng.
,
176
, pp.
1041
1052
.
18.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Masihi
,
M.
,
2020
, “
Development of a Numerical Model for Single- and Two-Phase Flow Simulation in Perforated Porous Media
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042901
.
19.
Shadloo
,
M. S.
,
Rahmat
,
A.
,
Karimipour
,
A.
, and
Wongwises
,
S.
,
2020
, “
Estimation of Pressure Drop of Two-Phase Flow in Horizontal Long Pipes Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112110
.
20.
Ojha
,
S. P.
,
Misra
,
S.
,
Tinni
,
A.
,
Sondergeld
,
C.
, and
Rai
,
C.
,
2017
, “
Relative Permeability Estimates for Wolfcamp and Eagle Ford Shale Samples From Oil, Gas and Condensate Windows Using Adsorption-Desorption Measurements
,”
Fuel
,
208
, pp.
52
64
.
21.
Song
,
W.
,
Yao
,
J.
,
Ma
,
J.
,
Sun
,
H.
,
Li
,
Y.
,
Yang
,
Y.
, and
Zhang
,
L.
,
2018
, “
Numerical Simulation of Multiphase Flow in Nanoporous Organic Matter With Application to Coal and Gas Shale Systems
,”
Water Resour. Res.
,
54
(
2
), pp.
1077
1092
.
22.
Huang
,
X.
,
Bandilla
,
K. W.
, and
Celia
,
M. A.
,
2016
, “
Multi-Physics Pore-Network Modeling of Two-Phase Shale Matrix Flows
,”
Transp. Porous Media
,
111
(
1
), pp.
123
141
.
23.
Wang
,
X.
, and
Sheng
,
J. J.
,
2019
, “
Multi-Scaled Pore Network Modeling of Gas-Water Flow in Shale Formations
,”
J. Pet. Sci. Eng.
,
177
, pp.
899
908
.
24.
Meng
,
X.
, and
Wang
,
J.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
.
25.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
.
26.
Zhenyu
,
P.
,
Qi
,
H.
,
Yueshun
,
H.
,
Yiguo
,
Z.
,
Yulong
,
K.
,
Pu
,
B.
, and
Pitong
,
S.
,
2020
, “
A New Method for Ultra-Low Permeability Reservoir Characterization After Water Flooding Development
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
113005
.
27.
Yassin
,
M. R.
,
Dehghanpour
,
H.
,
Wood
,
J.
, and
Lan
,
Q.
,
2016
, “
A Theory for Relative Permeability of Unconventional Rocks With Dual-Wettability Pore Network
,”
SPE J.
,
21
(
06
), pp.
1970
1980
.
28.
Cui
,
R.
,
Feng
,
Q.
,
Chen
,
H.
,
Zhang
,
W.
, and
Wang
,
S.
,
2019
, “
Multiscale Random Pore Network Modeling of Oil-Water Two-Phase Slip Flow in Shale Matrix
,”
J. Pet. Sci. Eng.
,
175
, pp.
46
59
.
29.
Wang
,
X.
, and
Sheng
,
J. J.
,
2018
, “
Spontaneous Imbibition Analysis in Shale Reservoirs Based on Pore Network Modeling
,”
J. Pet. Sci. Eng.
,
169
, pp.
663
672
.
30.
Norouzi Apourvari
,
S.
, and
Arns
,
C. H.
,
2016
, “
Image-Based Relative Permeability Upscaling From the Pore Scale
,”
Adv. Water Resour.
,
95
, pp.
161
175
.
31.
Ojha
,
S. P.
,
Misra
,
S.
,
Sinha
,
A.
,
Dang
,
S.
,
Tinni
,
A.
,
Sondergeld
,
C.
, and
Rai
,
C.
,
2018
, “
Relative Permeability and Production-Performance Estimations for Bakken, Wolfcamp, Eagle Ford, and Woodford Shale Formations
,”
SPE Reserv. Eval. Eng.
,
21
(
02
), pp.
307
324
.
32.
Zhang
,
T.
,
Li
,
X.
,
Sun
,
Z.
,
Feng
,
D.
,
Miao
,
Y.
,
Li
,
P.
, and
Zhang
,
Z.
,
2017
, “
An Analytical Model for Relative Permeability in Water-Wet Nanoporous Media
,”
Chem. Eng. Sci.
,
174
, pp.
1
12
.
33.
Zhang
,
T.
,
Li
,
X.
,
Li
,
J.
,
Feng
,
D.
,
Wu
,
K.
,
Shi
,
J.
,
Sun
,
Z.
, and
Han
,
S.
,
2018
, “
A Fractal Model for Gas–Water Relative Permeability in Inorganic Shale With Nanoscale Pores
,”
Transp. Porous Media
,
122
(
2
), pp.
305
331
.
34.
Wang
,
J.
,
Song
,
H.
,
Rasouli
,
V.
, and
Killough
,
J.
,
2019
, “
An Integrated Approach for Gas-Water Relative Permeability Determination in Nanoscale Porous Media
,”
J. Pet. Sci. Eng.
,
173
, pp.
237
245
.
35.
Wang
,
H.
,
Su
,
Y.
,
Wang
,
W.
,
Li
,
L.
,
Sheng
,
G.
, and
Zhan
,
S.
,
2019
, “
Relative Permeability Model of Oil-Water Flow in Nanoporous Media Considering Multi-Mechanisms
,”
J. Pet. Sci. Eng.
,
183
, p.
106361
.
36.
Zhan
,
S.
,
Su
,
Y.
,
Jin
,
Z.
,
Zhang
,
M.
,
Wang
,
W.
,
Hao
,
Y.
, and
Li
,
L.
,
2020
, “
Study of Liquid-Liquid Two-Phase Flow in Hydrophilic Nanochannels by Molecular Simulations and Theoretical Modeling
,”
Chem. Eng. J.
,
395
, p.
125053
.
37.
Cui
,
J.
, and
Wu
,
K.
,
2020
, “
Equivalent Permeability of Shale Rocks: Simple and Accurate Empirical Coupling of Organic and Inorganic Matter
,”
Chem. Eng. Sci.
,
216
, p.
115491
.
38.
Wu
,
K.
,
Chen
,
Z.
,
Li
,
J.
,
Li
,
X.
,
Xu
,
J.
, and
Dong
,
X.
,
2017
, “
Wettability Effect on Nanoconfined Water Flow
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
13
), pp.
1
6
.
39.
Kawahara
,
A.
,
Chung
,
P. Y.
, and
Kawaji
,
M.
,
2002
, “
Investigation of Two-Phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel
,”
Int. J. Multiph. Flow
,
28
(
9
), pp.
1411
1435
.
40.
Wu
,
Q.
,
Bai
,
B.
,
Ma
,
Y.
,
Ok
,
J. T.
,
Neeves
,
K. B.
, and
Xiaolong
,
Y.
,
2014
, “
Optic Imaging of Two-Phase-Flow Behavior in 1D Nanoscale Channels
,”
SPE J.
,
19
(
5
) pp.
793
802
.
You do not currently have access to this content.