Abstract

Vibro-impact drilling has been proven to be a viable technique for enhancing the rate of penetration (ROP) in deep and ultra-deep well drilling. It is essential to study the effects of impact parameters on impact energy and rock-drilling efficiency for impact tool design and operating parameter optimization. In this paper, the influences of impact parameters including impact frequency, dynamic loading amplitude, and loading on impact energy were analyzed by a theoretical method. Then, a full-scale drilling experiment was conducted to study the rock-drilling efficiency. The results are as follows: the optimal frequency is higher than the resonance frequency of the rock. The impact energy increases with the dynamic loading amplitude. The penetration rate at dynamic loading amplitude of 4 kN (0.13137 mm/s) is 38.7% higher than that of 2 kN (0.09473 mm/s). When the impact frequency is lower than 150 Hz, the rock-drilling efficiency increases with the impact frequency and dynamic loading amplitude. The penetration rate is 0.1051 mm/s at impact frequency of 150 Hz, which is 29.8% higher than that of 10 Hz. The impact energy and penetration rate at square loading waveform are the largest. The impact energy per second at loading waveform of square, sine, and triangle is 19.6 J, 12 J, and 7.91 J, respectively, when the impact frequency is set to optimal frequency of impact energy. This study provides a theoretical guidance for the optimization design of vibro-impact drilling technology.

References

1.
Samuel
,
G. R.
,
1996
, “
Percussion Drilling…Is It a Lost Technique? A Review
,”
Paper Presented at the Permian Basin Oil and Gas Recovery Conference
,
Midland, TX
,
March
.
2.
Pavlovskaia
,
E.
,
Hendry
,
D. C.
, and
Wiercigroch
,
M.
,
2015
, “
Modelling of High Frequency Vibro-Impact Drilling
,”
Int. J. Mech. Sci.
,
91
, pp.
110
119
.
3.
Wiercigroch
,
M.
,
2013
, “
Resonance Enhanced Drilling: Method and Apparatus
,” Google Patents.
4.
Azarhoushang
,
B.
, and
Akbari
,
J.
,
2007
, “
Ultrasonic-Assisted Drilling of Inconel 738-LC
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1027
1033
.
5.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1971
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part I—Theory of Percussive Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
8
(
4
), pp.
311
333
.
6.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1971
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part II—Force-Penetration and Specific Energy Determinations
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
8
(
4
), pp.
335
340
, IN7–IN10, 341–356.
7.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1972
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part III—Experimental Verification of the Mathematical Theory
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
9
(
3
), pp.
417
418
.
8.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1972
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part IV—Application of the Model to Actual Percussion Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
9
(
3
), pp.
431
442
.
9.
Franca
,
L. F. P.
,
2011
, “
A Bit–Rock Interaction Model for Rotary–Percussive Drilling
,”
Int. J. Rock Mech. Min. Sci.
,
48
(
5
), pp.
827
835
.
10.
Romulo
,
R. A.
, and
Hans
,
I. W.
, “
Development of a Vibroimpact Device for the Resonance Hammer Drilling
,”
Proceedings of the XII International Symposium on Dynamic Problems of Mechanics
.
11.
Aguiar
,
R. R.
, and
Weber
,
H. I.
,
2007
, “
Resonance Hammer Drilling: Study of a Vibro-Impact System With Embarked Force
,”
19th International Congress of Mechanical Engineering
,
Brazil
12.
Hall
,
D. R.
,
Balley
,
J.
,
Kudla
,
M.
, and
Fox
,
J.
,
2009
, “
Drilling at a Resonant Frequency
,”
US Patent No. 7,591,327
.
13.
Wiercigroch
,
M.
,
Vaziri
,
V.
, and
Kapitaniak
,
M.
,
2017
, “
RED: Revolutionary Drilling Technology for Hard Rock Formations
,”
SPE/IADC Drilling Conference and Exhibition
,
The Hague, The Netherlands
, Society of Petroleum Engineers.
14.
Krivtsov
,
A. M.
, and
Wiercigroch
,
M.
,
1999
, “
Dry Friction Model of Percussive Drilling
,”
Meccanica
,
34
(
6
), pp.
425
434
.
15.
Lundberg
,
B.
, and
Okrouhlik
,
M.
,
2006
, “
Efficiency of a Percussive Rock Drilling Process With Consideration of Wave Energy Radiation Into the Rock
,”
Int. J. Impact Eng.
,
32
(
10
), pp.
1573
1583
.
16.
Lundberg
,
B.
, and
Okrouhlik
,
M.
,
2001
, “
Influence of 3D Effects on the Efficiency of Percussive Rock Drilling
,”
Int. J. Impact Eng.
,
25
(
4
), pp.
345
360
.
17.
Klishin
,
V. I.
,
Kokoulin
,
D. I.
,
Kubanychbek
,
B.
,
Alekseev
,
S. E.
, and
Shakhtorin
,
I. O.
,
2015
, “
Substantiation of Type and Parameters of Downhole Air Hammer With a View to Increase Small Diameter Hole Drilling Velocity
,”
J. Min. Sci.
,
51
(
6
), pp.
1126
1131
.
18.
Lotfi
,
M.
, and
Amini
,
S.
,
2017
, “
Experimental and Numerical Study of Ultrasonically-Assisted Drilling
,”
Ultrasonics
,
75
, pp.
185
193
.
19.
Tao
,
Z.
, and
Mo
,
H.
,
1990
, “
An Experimental Study and Analysis of the Behaviour of Rock Under Cyclic Loading
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
27
(
1
), pp.
51
56
.
20.
Ren
,
S.
,
Bai
,
Y. M.
,
Zhang
,
J. P.
,
Jiang
,
D. Y.
, and
Yang
,
C. H.
,
2013
, “
Experimental Investigation of the Fatigue Properties of Salt Rock
,”
Int. J. Rock Mech. Min. Sci.
,
64
(
1
), pp.
68
72
.
21.
Xiao
,
J. Q.
,
Ding
,
D. X.
,
Jiang
,
F. L.
, and
Xu
,
G.
,
2010
, “
Fatigue Damage Variable and Evolution of Rock Subjected to Cyclic Loading
,”
Int. J. Rock Mech. Min. Sci.
,
47
(
3
), pp.
461
468
.
22.
Simon
,
R.
,
1963
, “
Energy Balance in Rock Drilling
,”
Soc. Petrol. Eng. J.
,
3
(
4
), pp.
298
306
.
23.
Zhao
,
Y.
,
Zhang
,
L.
,
Wang
,
W.
,
Wan
,
W.
, and
Ma
,
W.
,
2018
, “
Separation of Elastoviscoplastic Strains of Rock and a Nonlinear Creep Model
,”
Int. J. Geomech.
,
18
(
1
), p.
04017129
.
24.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Grebogi
,
C.
,
2001
, “
Modeling of an Impact System With a Drift
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
64
(
2
), p.
056224
.
25.
Blazejczyk-Okolewska
,
B.
, and
Kapitaniak
,
T.
,
1996
, “
Dynamics of Impact Oscillator With Dry Friction
,”
Chaos Solitons Fractals
,
7
(
9
), pp.
1455
1459
.
26.
Saksala
,
T.
,
Gomon
,
D.
,
Hokka
,
M.
, and
Kuokkala
,
V.-T.
,
2014
, “
Numerical and Experimental Study of Percussive Drilling With a Triple-Button Bit on Kuru Granite
,”
Int. J. Impact Eng.
,
72
, pp.
56
66
.
27.
Li
,
W.
,
Yan
,
T.
,
Li
,
S.
, and
Zhang
,
X.
,
2013
, “
Rock Fragmentation Mechanisms and an Experimental Study of Drilling Tools During High-Frequency Harmonic Vibration
,”
Petrol. Sci.
,
10
(
2
), pp.
205
211
.
You do not currently have access to this content.