Abstract

Small wind turbines usually suffer from poor efficincy, low power, and lack of public incentives. This study is focused on investigating the effects of the geometry of the airfoil sections and blades on the starting torque and minimum wind speed for energy generation. The blade element momentum theory is used to develop a numerical code where the airfoil S832 is used as a reference for comparison and validation. The investigated parameters include three airfoil sections, Joukowski J9.513, Gottingen GO447, and S832, linear and elliptic chord distributions, linear twist angle distribution, and multiple airfoil sections along the blade. The results show that large local solidity ratio at the intermediate region of elliptic chord distribution produces significant reduction in the local generated torque of about 5–21% and that the linear chord distribution along the blade length increases the torque by about 27–77% and thus permits lower starting wind speeds. For rotors with high solidity ratio as in the case of elliptic chord distribution, the distribution of twist angle for constant angle of attack reduces the generated torque by about 13–19%. The J9.513 airfoil-based rotor shows 20–35% more start torque than the S832 and GO447 airfoils-based rotors. The linear chord distribution shows better results for all the three airfoils-based rotors. The linear twist angle distribution increases significantly the start torque of the rotors with the proposed airfoils sections. The three airfoils S832, GO447, and J9.513 with linear twist angle distribution are viable options for small wind turbines. The J9.513 with linear chord and linear twist angle distribution shows the lowest wind speed for electricity generation. The use of multiple airfoils on the blade length shows marginal improvement of the starting torque.

References

1.
Klagge
,
B.
,
Liu
,
Z.
, and
Campos Silva
,
P.
,
2012
, “
Constructing China’s Wind Energy Innovation System
,”
Energy Policy
,
50
(
C
), pp.
370
382
.
2.
Global Wind Energy Council (GWEC)
,
2018
, “
Global Wind Energy Report: Annual Market Update 2017
,” pp.
1
72
.
3.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India’s Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
030801
.
4.
Grieser
,
B.
,
Sunak
,
Y.
, and
Madlener
,
R.
,
2015
, “
Economics of Small Wind Turbines in Urban Settings: An Empirical Investigation for Germany
,”
Renew. Energy
,
78
(
C
), pp.
334
350
.
5.
Rehman
,
S.
,
Alam
,
M.
,
Alhems
,
L. M.
, and
Rafique
,
M. M.
,
2018
, “
Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review
,”
Energies
,
11
(
3
), p.
506
.
6.
Adaramola
,
M.
,
2014
,
Wind Turbine Technology: Principles and Design
,
CRC Press
,
New York
.
7.
Herbert
,
J. G. M.
,
Iniyan
,
S.
,
Sreevalsan
,
E.
, and
Rajapandian
,
S.
,
2007
, “
A Review of Wind Energy Technologies
,”
Renew. Sustain. Energy Rev.
,
11
(
6
), pp.
1117
1145
.
8.
Hansen
,
M. O. L.
, and
Aagaard Madsen
,
H.
,
2011
, “
Review Paper on Wind Turbine Aerodynamics
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
114001
.
9.
Refan
,
M.
, and
Hangan
,
H.
,
2012
, “
Aerodynamic Performance of a Small Horizontal Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021013
.
10.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
11.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
12.
Ani
,
S. O.
,
Polinder
,
H.
, and
Ferreira
,
J. A.
,
2011
, “
Energy Yield of Small Wind Turbines in Low Wind Speed Areas
,”
3rd IEEE International Conference on Adaptive Science and Technology (ICAST 2011)
,
Abuja, Nigeria
,
Nov. 24–26
, pp.
93
98
.
13.
Song
,
Q.
, and
David Lubitz
,
W.
,
2014
, “
Design and Testing of a New Small Wind Turbine Blade
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
034502
.
14.
Vaquero
,
A. V.
,
Cheng
,
Y.
,
Del Campo
,
V.
, and
Díez
,
F. J.
,
2010
, “
Characterization of Low Reynolds Number Wind Turbine Aerodynamics by BEM Theory and PIV Measurements
,”
Proceedings of the ASME 2010, 3rd Joint US-European Fluids Engineering Summer Meeting Collocated With 8th International Conference on Nanochannels, Microchannels, and Minichannels
,
Montreal, Quebec, Canada
,
Aug. 1–5
, pp.
935
946
.
15.
Muhsen
,
H.
,
Al-Kouz
,
W.
, and
Khan
,
W.
,
2020
, “
Small Wind Turbine Blade Design and Optimization
,”
Symmetry
,
12
(
1
), p.
18
.
16.
Hsieh
,
M. F.
,
Dorrell
,
D. G.
,
Yeh
,
Y. H.
, and
Ekram
,
S.
,
2009
, “
Cogging Torque Reduction in Axial Flux Machines for Small Wind Turbines
,”
35th Annual Conference of IEEE Industrial Electronics
,
Porto, Portugal
,
Nov. 3–5
, pp.
4435
4439
.
17.
Wright
,
A. K.
, and
Wood
,
D. H.
,
2004
, “
The Starting and Low Wind Speed Behaviour of a Small Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
14–15
), pp.
1265
1279
.
18.
Berges
,
B.
,
2007
,
Development of Small Wind Turbines
,
Technical University of Denmark, Mechanical Engineering
,
Lyngby
.
19.
Khan
,
S.
,
Shah
,
K.
,
Izhar-Ul-Haq, Khan
,
H.
,
Ali
,
S.
,
Ahmad
,
N.
,
Abid
,
M.
,
Ali
,
H.
,
Ihsanullah
, and
Sher
,
M.
,
2014
, “
Observation of the Starting and Low Speed Behavior of Small Horizontal Axis Wind Turbine
,”
J. Wind Energy
,
2014
(
4
), pp.
1
8
.
20.
Van Rooij
,
R. P. J. O. M.
, and
Timmer
,
W. A.
,
2003
, “
Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
468
478
.
21.
Bouhelal
,
A.
,
Smaili
,
A.
,
Masson
,
C.
, and
Guerri
,
O.
,
2017
, “
Effects of Surface Roughness on Aerodynamic Performance of Horizontal Axis Wind Turbines
,”
The 25th Annual Conference of the Computational Fluid Dynamics Society of Canada
,
Windsor, Ontario, Canada
,
June 18–21
, pp.
337
348
.
22.
El Khchine
,
Y.
, and
Sriti
,
M.
,
2018
, “
Improved Blade Element Momentum Theory (BEM) for Predicting the Aerodynamic Performances of Horizontal Axis Wind Turbine Blade (HAWT)
,”
Tech. Mech.
,
38
(
2
), pp.
191
202
.
23.
Hampsey
,
M.
, and
Wood
,
D. H.
,
1999
, “
Designing Small Wind Turbine Blades for Optimal Starting and Power Extraction
,”
Wind Eng.
,
23
(
1
), pp.
31
40
.
24.
Singh
,
R. K.
,
Ahmed
,
M. R.
,
Zullah
,
M. A.
, and
Lee
,
Y. H.
,
2012
, “
Design of a Low Reynolds Number Airfoil for Small Horizontal Axis Wind Turbines
,”
Renew. Energy
,
42
, pp.
66
76
.
25.
Bavanish
,
B.
, and
Thyagarajan
,
K.
,
2013
, “
Optimization of Power Coefficient on a Horizontal Axis Wind Turbine Using BEM Theory
,”
Renew. Sustain. Energy Rev.
,
26
, pp.
169
182
.
26.
Jiang
,
H. B.
,
Li
,
Y. R.
, and
Cheng
,
Z. Q.
,
2014
, “
Relations of Lift and Drag Coefficients of Flow Around Flat Plate
,”
Appl. Mech. Mater.
,
518
, pp.
161
164
.
27.
Ebert
,
P. R.
, and
Wood
,
D. H.
,
1997
, “
Observations of the Starting Behaviour of a Small Horizontal-Axis Wind Turbine
,”
Renew. Energy
,
12
(
3
), pp.
245
257
.
28.
Lanzafame
,
R.
, and
Messina
,
M.
,
2007
, “
Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory
,”
Renew. Energy
,
32
(
14
), pp.
2291
2305
.
29.
Wood
,
D.
,
2011
, “Small Wind Turbines,”
Advances in Wind Energy Conversion Technology
,
M.
Sathyajith
, and
G. S.
Philip
, eds.,
Springer
,
Berlin
, pp.
195
211
.
30.
Karthikeyan
,
N.
,
Kalidasa Murugavel
,
K.
,
Arun Kumar
,
S.
, and
Rajakumar
,
S.
,
2015
, “
Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
801
822
.
31.
Shen
,
X.
,
Yang
,
H.
,
Chen
,
J.
,
Zhu
,
X.
, and
Du
,
Z.
,
2016
, “
Aerodynamic Shape Optimization of Non-Straight Small Wind Turbine Blades
,”
Energy Convers. Manage.
,
119
(
6
), pp.
266
278
.
32.
Ighodaro
,
O.
, and
Akhihiero
,
D.
,
2021
, “
Modeling and Performance Analysis of a Small Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031301
.
33.
Tangler
,
J. L.
, and
Somers
,
D. M.
,
1987
, “
Status of the Special-Purpose Airfoil Families
,”
Solar Energy Research Inst.
,
Golden, CO; Airfoils, Inc.
,
Hampton, VA
, CONF 8710629.
34.
Tangler
,
J. L.
, and
Somers
,
D. M.
,
1995
, “
NREL Airfoil Families for HAWTs
,” National Renewable Energy Lab., Golden, CO, NREL/TP-442-7109.
35.
Selig
,
M.
,
2016
, “
UIUC Airfoil Coordinates Database
,” UIUC Applied Aerodynamics Group, https://m-selig.ae.illinois.edu/ads/coord_database.html
36.
Drela
,
M.
, and
Youngren
,
H.
,
2008
, “
XFOIL: Subsonic Airfoil Development System
,” http://web.mit.edu/drela/Public/web/xfoil/
37.
Glauert
,
H.
,
1938
,
The Elements of Aerofoil and Airscrew Theory
,
Cambridge University Press
,
London, UK
.
38.
Ismail
,
K. A. R.
,
2009
,
Aerodinâmica Básica
,
Cisgraf Artes Graficas Ltda
,
Campinas, São Paulo
.
39.
Wright
,
A. K.
,
2005
, “
Aspects of the Aerodynamics and Operation of a Small Horizontal Axis Wind Turbine
,”
Ph.D. thesis
,
The University of Newcastle
,
Callaghan
.
40.
Jansen
,
W. A. M.
, and
Smulders
,
P. T.
,
1977
,
Rotor Design for Horizontal Axis Windmills
, Vol.
7701
,
SWD Publications, Stuurgroep Windenergie Ontwikkelingslanden
,
Hoboken, NJ
.
41.
Alxion Parc Technologique
,
2011
, “
STK Wind and Water Turbines Alternators
,” http://www.alxion.com/products/stk-alternators/
42.
Meyer
,
C. J.
, and
Kröger
,
D. G.
,
2001
, “
Numerical Simulation of the Flow Field in the Vicinity of an Axial Flow Fan
,”
Int. J. Numer. Methods Fluids
,
36
(
8
), pp.
947
969
.
43.
Wood
,
D. H.
,
2001
, “
A Blade Element Estimation of the Cut-In Wind Speed of a Small Turbine
,”
Wind Eng.
,
25
(
2
), pp.
125
130
.
44.
Houghton
,
E. L.
, and
Carpenter
,
P. W.
,
2003
,
Further Aerodynamics for Engineering Students
,
Edward Arnold
,
London, UK
.
You do not currently have access to this content.