Abstract

The impact of post-combustion carbon dioxide capture on the performance of a power plant is evaluated. A model of a coal power plant with post-combustion temperature swing adsorption (TSA) CO2 capture using sorbent-loaded hollow fibers is presented. The resulting performance and cost of carbon capture are compared with those of other adsorption-based technologies. A parametric analysis of the performance of the power plant with respect to key parameters in the hollow fiber module operation is presented. It is found that electrical energy consumption for the compression of CO2 is a major parasitic load (PL) common to all absorption technologies and accounts for almost half of the total parasitic load. The effect of source temperature, flue gas (FG) fan, and coupling fluid pump flowrates on overall system performance is presented. The impacts of different carbon capture technologies on the same coal-fired power plant are compared. Hollow fiber modules had the lowest parasitic load on the power plant, followed by KS-2 based carbon capture.

References

1.
IPCC
,
2019
,
Refinement to the 2006 IPCC Guidelines for National Greenhouse has Inventories
,
IPCC
,
Switzerland
,
2019
.
2.
EIA
,
2020
,
How Much Carbon Dioxide is Produced per Kilowatthour When Generating Electricity With Fossil Fuels?
,
U.S. Energy Information Administration
,
Washington, DC
.
3.
Hoeven
,
M. V. D.
,
2013
,
Technology Roadmap: Carbon Capture and Storage
,
International Energy Agency (IEA)
,
Paris, France
.
4.
Mimura
,
T.
,
Shimojo
,
S.
,
Suda
,
T.
,
Iijima
,
M.
, and
Mitsuoka
,
S.
,
1995
, “
Research and Development on Energy Saving Technology for Flue Gas Carbon Dioxide Recovery and Steam System in Power Plant
,”
Energy Convers. Manage.
,
36
(
6–9
), pp.
397
400
.
5.
Mimura
,
T.
,
Simayoshi
,
H.
,
Suda
,
T.
,
Iijima
,
M.
, and
Mituoka
,
S.
,
1997
, “
Development of Energy Saving Technology for Flue Gas Carbon Dioxide Recovery in Power Plant by Chemical Absorption Method and Steam System
,”
Energy Convers. Manage.
,
38
(
Supplement
), pp.
S57
S62
.
6.
Yeh
,
J. T.
,
Pennline
,
H. W.
,
Resnik
,
K. P.
, and
Rygle
,
K.
,
2005
, “
Semi-Batch Absorption and Regeneration Studies for CO2 Capture by Aqueous Ammonia
,”
Fuel Proc. Technol.
,
86
(
14–15
), pp.
1533
1546
.
7.
Goff
,
G. S.
, and
Rochelle
,
G. T.
,
2004
, “
Monoethanolamine Degradation: O2 Mass Transfer Effects Under CO2 Capture Conditions
,”
Ind. Eng. Chem. Res.
,
43
(
20
), pp.
6400
6408
.
8.
Clausse
,
M.
,
Merel
,
J.
, and
Meunier
,
F.
,
2011
, “
Numerical Parametric Study on CO2 Capture by Indirect Thermal Swing Adsorption
,”
Int. J. Greenhouse Gas Control
,
5
(
5
), pp.
1206
1213
.
9.
Riboldi
,
L.
, and
Bolland
,
O.
,
2017
, “
Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials
,”
Energy Procedia
,
114
(
1
), pp.
2390
2400
.
10.
Ishibashi
,
M.
,
Ota
,
H.
,
Akutsu
,
N.
,
Umeda
,
S.
,
Tajika
,
M.
,
Izumi
,
J.
,
Yasutake
,
A.
,
Kabata
,
T.
, and
Kageyama
,
Y.
,
1996
, “
Technology for Removing Carbon Dioxide From Power Plant Flue Gas by the Physical Adsorption Method
,”
Energy Convers. Manage.
,
37
(
6
), pp.
929
933
.
11.
Jiang
,
L.
,
Gonzalez-Diaz
,
A.
,
Ling-Chin
,
J.
,
Roskilly
,
A. P.
, and
Smallbone
,
A. J.
,
2019
, “
Post-Combustion CO2 Capture From a Natural Gas Combined Cycle Power Plant Using Activated Carbon Adsorption
,”
Appl. Energy
,
245
(
1
), pp.
1
15
.
12.
Khalilpour
,
R.
,
Mumford
,
K.
,
Zhai
,
H.
,
Abbas
,
A.
,
Stevens
,
G.
, and
Rubin
,
E. S.
,
2015
, “
Membrane-Based Carbon Capture From Flue Gas: A Review
,”
J. Cleaner Prod.
,
103
(
2
), pp.
286
300
.
13.
Determan
,
M. D.
,
Hoysall
,
D. C.
, and
Garimella
,
S.
,
2012
, “
Heat- and Mass-Transfer Kinetics of Carbon Dioxide Capture Using Sorbent-Loaded Hollow Fibers
,”
Ind. Eng. Chem. Res.
,
51
(
1
), pp.
495
502
.
14.
Determan
,
M. D.
,
Hoysall
,
D. C.
,
Garimella
,
S.
,
Lenz
,
R.
, and
Leta
,
D. P.
,
2016
, “
Carbon Dioxide Capture Using Sorbent-Loaded Hollow-Fiber Modules With Integrated Heat Recovery
,”
Ind. Eng. Chem. Res.
,
55
(
7
), pp.
2119
2127
.
15.
Hoysall
,
D. C.
,
Determan
,
M. D.
,
Garimella
,
S.
,
Lenz
,
R. D.
, and
Leta
,
D. P.
,
2018
, “
Optimization of Carbon Dioxide Capture Using Sorbent-Loaded Hollow-Fiber Modules
,”
Int. J. Greenhouse Gas Control
,
76
(
9
), pp.
225
235
.
16.
Goto
,
K.
,
Yogo
,
K.
, and
Higashii
,
T.
,
2013
, “
A Review of Efficiency Penalty in a Coal-Fired Power Plant With Post-Combustion CO2 Capture
,”
Appl. Energy
,
111
(
11
), pp.
710
720
.
17.
Linnenberg
,
S.
,
Liebenthal
,
U.
,
Oexmann
,
J.
, and
Kather
,
A.
,
2011
, “
Derivation of Power Loss Factors to Evaluate the Impact of Postcombustion CO2 Capture Processes on Steam Power Plant Performance
,”
Energy Procedia
,
4
, pp.
1385
1394
.
18.
Desideri
,
U.
, and
Antonelli
,
M.
,
2014
, “
A Simplified Method for the Evaluation of the Performance of Coal Fired Power Plant With Carbon Capture
,”
Appl. Therm. Eng.
,
64
(
1
), pp.
263
272
.
19.
Yang
,
H.
,
Fan
,
S.
,
Lang
,
X.
,
Wang
,
Y.
, and
Nie
,
J.
,
2011
, “
Economic Comparison of Three Gas Separation Technologies for CO2 Capture From Power Plant Flue Gas
,”
Chin. J. Chem. Eng.
,
19
(
4
), pp.
615
620
.
20.
Chakravarti
,
S.
,
Gupta
,
A.
, and
Hunek
,
B.
,
2001
, “
Advanced Technology
,”
First National Conference on Carbon Sequestration
,
Washington, DC
, pp.
1
10
.
21.
Hajilary
,
N.
, and
Rezakazemi
,
M.
,
2018
, “
CFD Modeling of CO2 Capture by Water-Based Nanofluids Using Hollow Fiber Membrane Contactor
,”
Int. J. Greenhouse Gas Control
,
77
(
10
), pp.
88
95
.
22.
Klein
,
S. A.
,
2020
,
Engineering Equation Solver
, https://fchartsoftware.com/
23.
Lively
,
R. P.
,
Leta
,
D. P.
,
DeRites
,
B. A.
,
Chance
,
R. R.
, and
Koros
,
W. J.
,
2011
, “
Hollow Fiber Adsorbents for CO2 Capture: Kinetic Sorption Performance
,”
Chem. Eng. J.
,
171
(
3
), pp.
801
810
.
24.
Desideri
,
U.
, and
Paolucci
,
A.
,
1999
, “
Performance Modelling of a Carbon Dioxide Removal System for Power Plants
,”
Energy Convers. Manage.
,
40
(
18
), pp.
1899
1915
.
25.
Yokoyama
,
T.
,
2004
,
Separations Technology VI: New Perspectives on Very Large-Scale Operations
,
C.
Fell
and
G. E.
Keller II
, eds.,
University of New South Wales
,
Australia
26.
Abu-Zahra
,
M. R.
,
Schneiders
,
L. H.
,
Niederer
,
J. P.
,
Feron
,
P. H.
, and
Versteeg
,
G. F.
,
2007
, “
CO2 Capture From Power Plants: Part I. A Parametric Study of the Technical Performance Based on Monoethanolamine
,”
Int. J. Greenhouse Gas Control
,
1
(
1
), pp.
37
46
.
27.
Park
,
J.-H.
,
Beum
,
H.-T.
,
Kim
,
J.-N.
, and
Cho
,
S.-H.
,
2002
, “
Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 From Flue Gas
,”
Ind. Eng. Chem. Res.
,
41
(
16
), pp.
4122
4131
.
28.
Ko
,
D.
,
Siriwardane
,
R.
, and
Biegler
,
L. T.
,
2005
, “
Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture
,”
Ind. Eng. Chem. Res.
,
44
(
21
), pp.
8084
8094
.
29.
Zhang
,
J.
,
Webley
,
P. A.
, and
Xiao
,
P.
,
2008
, “
Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture From Flue Gas
,”
Energy Convers. Manage.
,
49
(
2
), pp.
346
356
.
30.
Suzuki
,
T.
,
Sakoda
,
A.
,
Suzuki
,
M.
, and
Izumi
,
J.
,
1997
, “
Recovery of Carbon Dioxide From Stack Gas by Piston-Driven Ultra-Rapid PSA
,”
J. Chem. Eng. Jpn.
,
30
(
6
), pp.
1026
1033
.
31.
Chou
,
C.-T.
, and
Chen
,
C.-Y.
,
2004
, “
Carbon Dioxide Recovery by Vacuum Swing Adsorption
,”
Sep. Purif. Technol.
,
39
(
1
), pp.
51
65
.
32.
Reynolds
,
S. P.
,
Ebner
,
A. D.
, and
Ritter
,
J. A.
,
2005
, “
New Pressure Swing Adsorption Cycles for Carbon Dioxide Sequestration
,”
Adsorption
,
11
(
1
), pp.
531
536
.
33.
Reynolds
,
S. P.
,
Ebner
,
A. D.
, and
Ritter
,
J. A.
,
2006
, “
Stripping PSA Cycles for CO2 Recovery From Flue Gas at High Temperature Using a Hydrotalcite-Like Adsorbent
,”
Ind. Eng. Chem. Res.
,
45
(
12
), pp.
4278
4294
.
34.
Na
,
B.-K.
,
Koo
,
K.-K.
,
Eum
,
H.-M.
,
Lee
,
H.
, and
Song
,
H. K.
,
2001
, “
CO2 Recovery From Flue Gas by PSA Process Using Activated Carbon
,”
Korean J. Chem. Eng.
,
18
(
2
), pp.
220
227
.
35.
Choi
,
W.-K.
,
Kwon
,
T.-I.
,
Yeo
,
Y.-K.
,
Lee
,
H.
,
Song
,
H. K.
, and
Na
,
B.-K.
,
2003
, “
Optimal Operation of the Pressure Swing Adsorption (PSA) Process for CO2 Recovery
,”
Korean J. Chem. Eng.
,
20
(
4
), pp.
617
623
.
36.
Chue
,
K.
,
Kim
,
J.
,
Yoo
,
Y.
,
Cho
,
S.
, and
Yang
,
R.
,
1995
, “
Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery From Flue Gas by Pressure Swing Adsorption
,”
Ind. Eng. Chem. Res.
,
34
(
2
), pp.
591
598
.
37.
Wu
,
S.
,
Bergins
,
C.
,
Kikkawa
,
H.
,
Kobayashi
,
H.
, and
Kawasaki
,
T.
,
2010
, “
Technology Options for Clean Coal Power Generation With CO2 Capture
,”
XXI World Energy Congress
,
Montreal, Canada
, pp.
1
22
.
38.
Rubin
,
E. S.
,
Chen
,
C.
, and
Rao
,
A. B.
,
2007
, “
Cost and Performance of Fossil Fuel Power Plants With CO2 Capture and Storage
,”
Energy Policy
,
35
(
9
), pp.
4444
4454
.
39.
Ansolabehere
,
S.
,
2006
,
The Future of Coal
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.