Abstract

This paper proposes a new feasible method to allow continuous change in the primary injection spray cone angle of liquid fuel droplets, which are injected from nozzles in liquid fuel combustion systems, to control the flame shape and thermal characteristics of the flame. The method is based on electric force applied to fuel droplets charged through frictional effects between the internal surface of the nozzle and the fuel flow as the liquid fuel is sprayed (based on the Millikan oil-drop experiment). A sprint computational fluid dynamics code was developed to investigate the effect of application of electric force to charged diesel fuel droplets, which were injected from a pressure swirl atomizer, on physical and thermal characteristics of a two-dimensional axisymmetric turbulent jet diffusion flame. The results show that an electric field applied to charged fuel droplets (electric force) changes the spatial distribution of the liquid fuel droplets in the flame reaction zone. An applied electric force in (−y) direction diverts the fuel droplets towards the axis centerline of the furnace and, consequently, decreases the primary injection cone angle and increases the concentration of the evaporated droplets around the axis centerline, which enhances the fuel-oxidant mixing rate and raises the flame temperature. Unlike an applied electric force in (−y) direction, an applied electric force in (+y) direction decreases the flame temperature. However, as the primary injection cone angle is decreased, an applied electric force in (+y) direction increases the flame temperature.

References

1.
Inam
,
S. A.
,
Hussain
,
M.
, and
Baig
,
M. M.
,
2019
, “
Numerical Simulation of Liquid Fuel Injection in Combustion Chamber
,”
Arabian J. Sci. Eng.
,
44
(
6
), pp.
5889
5895
.
2.
Yildiz
,
I.
,
2018
,
Comprehensive Energy Systems
, Vol.
1
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Pei
,
X.
,
Abdul Jameel
,
A. G.
,
Chen
,
C.
,
AlGhamdi
,
I. A.
,
AlAhmadi
,
K.
,
AlBarakati
,
E.
,
Saxena
,
S.
, and
Roberts
,
W. L.
,
2021
, “
Swirling Flame Combustion of Heavy Fuel Oil: Effect of Fuel Sulfur Content
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082103
.
4.
Lenferna
,
G. A.
,
2018
, “
Can We Equitably Manage the End of the Fossil Fuel Era?
,”
Energy Res. Soc. Sci.
,
35
, pp.
217
223
.
5.
Watanabe
,
H.
,
Suzuki
,
Y.
,
Harada
,
T.
,
Matsushita
,
Y.
,
Aoki
,
H.
, and
Miura
,
T.
,
2010
, “
An Experimental Investigation of the Breakup Characteristics of Secondary Atomization of Emulsified Fuel Droplet
,”
Energy
,
35
(
2
), pp.
806
813
.
6.
Nguyen
,
D. C.
,
Hoang
,
A. T.
,
Tran
,
Q. V.
,
Hadiyanto
,
H.
,
Wattanavichien
,
K.
, and
Pham
,
V. V.
,
2021
, “
A Review on the Performance, Combustion, and Emission Characteristics of Spark-Ignition Engine Fueled With 2,5-Dimethylfuran Compared to Ethanol and Gasoline
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
040801
.
7.
Abu-Hamdeh
,
N. H.
,
Bantan
,
R. A. R.
,
Alimoradi
,
A.
, and
Pourhoseini
,
S. H.
,
2020
, “
The Effect of Injection Pressure on the Thermal Performance and Emission Characteristics of an Oil Burner Operating on B20 Palm Oil Biodiesel-Diesel Blend Fuel
,”
Fuel
,
278
, p.
118174
.
8.
Zhang
,
J.
,
Chen
,
G.
,
Shen
,
Y.
,
Li
,
B.
, and
Li
,
Q.
,
2021
, “
Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082304
.
9.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol–Dodecanol–Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
.
10.
Gürbüz
,
H.
, and
Demirtürk
,
S.
,
2020
, “
Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122306
.
11.
Yao
,
C. D.
,
Cheung
,
C. S.
,
Cheng
,
C. H.
,
Wang
,
Y. S.
,
Chan
,
T. L.
, and
Lee
,
S. C.
,
2008
, “
Effect of Diesel/Methanol Compound Combustion on Diesel Engine Combustion and Emissions
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1696
1704
.
12.
Martins
,
F.
,
Felgueiras
,
C.
,
Smitkova
,
M.
, and
Caetano
,
N.
,
2019
, “
Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries
,”
Energies
,
12
(
6
), p.
964
.
13.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2017
, “
An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032202
.
14.
Yilmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042204
.
15.
Masri
,
A. R.
,
Kalt
,
P. A. M.
,
AL-Abdel
,
Y. M.
, and
Barlow
,
R. S.
,
2007
, “
Turbulence–Chemistry Interactions in Non-Premixed Swirling Flames
,”
Combust. Theory Modell.
,
11
(
5
), pp.
653
673
.
16.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
.
17.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
18.
Yousefi
,
A.
, and
Birouk
,
M.
,
2017
, “
An Investigation of Multi-Injection Strategies for a Dual-Fuel Pilot Diesel Ignition Engine at Low Load
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012201
.
19.
Zhou
,
H.
,
Li
,
X.
,
Chen
,
Y.
,
Kang
,
Y.
,
Liu
,
D.
, and
Liu
,
F.
,
2020
, “
The Effect of Spray Angle on the Combustion and Emission Performance of a Separated Swirl Combustion System in a Diesel Engine
,”
Energy
,
190
, p.
116481
.
20.
Lambosi
,
L.
,
Khalid
,
A.
,
Manshoor
,
B.
,
Hisyam
,
S. H. X.
, and
Hao
,
L. K.
,
2015
, “
Effect of Nozzle Angle to Combustion Characteristic in Biodiesel Burner
,”
Appl. Mech. Mater.
,
773
, pp.
585
589
.
21.
Ekaab
,
N. S.
,
2017
, “
Experimental Study of the Effect of Fuel Spray Angle on Emissions of Pollutants From a Continuous Combustion Process
,”
J. Al Rafidain Univ. College
,
41
, pp.
319
332
.
22.
Abrishamchi
,
I.
,
Khazraii
,
Y.
, and
Bashirnezhad
,
K.
,
2014
, “
Effect of Fuel Spray Angle on Pollutants Emission in Turbulent Spray Flames
,”
M.Sc. thesis
,
Department of Mechanical Engineering, Mashhad Azad University
,
Mashhad
.
23.
De Corso
,
S. M.
,
1960
, “
Effect of Ambient and Fuel Pressure on Spray Drop Size
,”
ASME J. Energy Resour. Technol.
,
82
(
1
), pp.
10
18
.
24.
Khazraii
,
Y.
,
Daneshvar
,
K.
, and
Namin
,
H. K.
,
2011
, “
Numerical Simulation on NOx Emission in Liquid Fuel Spray Flames
,”
Int. J. Model. Optim.
,
1
(
4
), pp.
334
339
.
25.
Liu
,
J.
,
Zhang
,
X. Q.
,
Li
,
Q. L.
, and
Wang
,
Z. G.
,
2012
, “
Effect of Geometric Parameters on the Spray Cone Angle in the Pressure Swirl Injector
,”
J. Aerosp. Eng.
,
227
(
2
), pp.
342
353
.
26.
Ohrn
,
T. R.
,
Senser
,
D. W.
, and
Lefebvre
,
A. H.
,
1991
, “
Geometric Effects on Spray Cone Angle for Plain-Orifice Atomizers
,”
Atomization Sprays
,
1
(
3
), pp.
253
268
.
27.
Sakman
,
A. T.
,
Jog
,
M. A.
,
Jeng
,
S. M.
, and
Benjamin
,
M. A.
,
2000
, “
Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance
,”
AIAA J.
,
38
(
7
), pp.
1214
1218
.
28.
Zabarankin
,
M.
,
2017
, “
Toroidal Drop Under Electric Field: Arbitrary Drop-to-Ambient Fluid Viscosity Ratio
,”
Proc. R. Soc. A
,
473
(
2205
), p.
20170379
.
29.
Gillon
,
P.
,
Blanchard
,
J. N.
, and
Gilard
,
V.
,
2010
, “
Magnetic Field Influence on Coflow Laminar Diffusion Flames
,”
Russ. J. Phys. Chem. B
,
4
(
2
), pp.
279
285
.
30.
Baker
,
J.
, and
Calvert
,
M. E.
,
2003
, “
A Study of the Characteristics of Slotted Laminar Jet Diffusion Flames in the Presence of Non-uniform Magnetic Fields
,”
Combust. Flame
,
133
(
3
), pp.
345
357
.
31.
Wu
,
W.-F.
,
Qu
,
J.
,
Zhang
,
K.
,
Chen
,
W.-P.
, and
Li
,
B.-W.
,
2016
, “
Experimental Studies of Magnetic Effect on Methane Laminar Combustion Characteristics
,”
Combust. Sci. Technol.
,
188
(
3
), pp.
472
480
.
32.
Posdziech
,
O.
, and
Grundmann
,
R.
,
2001
, “
Electromagnetic Control of Seawater Flow Around Circular Cylinders
,”
Eur. J. Mech. B Fluids
,
20
(
2
), pp.
255
274
.
33.
Ullah
,
L.
,
Samad
,
A.
, and
Nawaz
,
A.
,
2021
, “
The Convective Instability of the Boundary-Layer Flow Over a Rotating Cone In and Out of a Uniform Magnetic Field
,”
Eur. J. Mech. B Fluids
,
87
, pp.
12
23
.
34.
Hosseinpour
,
J.
, and
Mahdavy-Moghaddam
,
H.
,
2020
, “
Computational Study of Magnetic Field Effects on the Nozzle of Hydrogen Micro Flame
,”
Combust. Flame
,
220
, pp.
247
256
.
35.
Pourhoseini
,
S. H.
,
Ramezani-Aval
,
H.
, and
Naghizadeh
,
N.
,
2020
, “
FHD and MHD Effects of Fe3O4-Water Magnetic Nanofluid on the Enhancement of Overall Heat Transfer Coefficient of a Heat Exchanger
,”
Phys. Scr.
,
95
(
4
), p.
045705
.
36.
Weier
,
T.
, and
Gerbeth
,
G.
,
2004
, “
Control of Separated Flows by TIME PERIODIC LORENTZ FORCES
,”
Eur. J. Mech. B Fluids
,
23
(
6
), pp.
835
849
.
37.
Millikan
,
R. A.
,
1918
, “
The Electron: Its Isolation and Measurement and the Determination of Some of Its Properties
,”
Nature
,
101
(
2525
), pp.
41
42
.
38.
Millikan
,
R. A.
,
1917
,
The Electron: Its Isolation and Measurement and the Determination of Some of Its Properties
,
Cambridge University Press
,
London
.
39.
Syred
,
N.
,
Kurniawan
,
K.
,
Griffiths
,
T.
,
Gralton
,
T.
, and
Ray
,
R.
,
2007
, “
Development of Fragmentation Models for Solid Fuel Combustion and Gasification as Subroutines for Inclusion in CFD Codes
,”
Fuel
,
86
(
14
), pp.
2221
2231
.
40.
Pourhoseini
,
S. H.
, and
Moghiman
,
M.
,
2014
, “
Experimental and Numerical Investigation Into Enhancing Radiation Characteristics of Natural-Gas Flame by Injection of Micro Kerosene Droplets
,”
J. Enhanced Heat Transfer
,
21
(
6
), pp.
407
423
.
41.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zho
,
J.
,
1995
, “
A New kɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
42.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
719
729
.
43.
Pourhoseini
,
S. H.
,
Namvar-Mahboub
,
M.
,
Hosseini
,
E.
, and
Alimoradi
,
A.
,
2021
, “
A Comparative Exploration of Thermal, Radiative and Pollutant Emission Characteristics of Oil Burner Flame Using Palm Oil Biodiesel-Diesel Blend Fuel and Diesel Fuel
,”
Energy
,
217
, p.
119338
.
44.
Wei
,
X.
, and
Yong
,
H.
,
2014
, “
Improved Semiempirical Correlation to Predict Sauter Mean Diameter for Pressure-Swirl Atomizers
,”
J. Propul. Power
,
30
(
6
), pp.
1628
1635
.
You do not currently have access to this content.