Abstract

An ASTM-CFR engine was modeled through computational fluid dynamics (CFD) coupled with chemical kinetics to evaluate the effect of dimethyl carbonate (DMC) and ethanol as gasoline components, the latter as reference oxygenating agent, on combustion characteristics and engine emissions. Validation against experimental in-cylinder pressure data indicated adequate reproduction of these fuels combustion, all blends showing higher and earlier pressure peaks than neat gasoline (ca. 0.2 MPa and 2 CAD). Simulated temperatures were close for all fuels, though slightly advanced for the oxygenated blends (ca. 2 CAD). Similar behavior of the oxygenates was predicted regarding HC, CO and soot emissions: ca. 90% reduction in HC, CO, and soot emissions were observed, but ethanol displayed up to 3.5% CO2 reduction and 17% NOx increase, while DMC showed up to 7% decrease in CO2 and 6% increase in NOx. Considering the advantage of using chemical kinetics for combustion calculations in the CFD model, i.e., quantification of any species present in the reaction mechanism, including those difficult to observe/measure experimentally, concentrations of non-regulated emissions (e.g., formaldehyde) were studied. In particular, a minor increase in formaldehyde emissions was found with both oxygenated fuels. Albeit a first approach to assessing oxygenating compounds effects on gasoline combustion and emissions under engine conditions through a CFD + detailed chemistry model, the results underline the potential of DMC as gasoline oxygenating agent, and are a starting point for studying non-measured/non-regulated species and parametric engine analysis in future models.

References

1.
Conti
,
J.
,
Holtberg
,
P.
,
Diefenderfer
,
J.
,
LaRose
,
A.
,
Turnure
,
J. T.
, and
Westfall
,
L.
,
2016
,
International Energy Outlook 2016 With Projections to 2040
,
5
.
2.
Reitz
,
R. D.
,
Ogawa
,
H.
,
Payri
,
R.
,
Fansler
,
T.
,
Kokjohn
,
S.
,
Moriyoshi
,
Y.
,
Agarwal
,
A. K.
, et al.
2020
, “
IJER Editorial: The Future of the Internal Combustion Engine
,”
Int. J. Engine Res.
,
21
(
1
), pp.
3
10
.
3.
Kalghatgi
,
G. T.
,
2015
, “
Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
101
115
.
4.
Alagumalai
,
A.
,
2014
, “
Internal Combustion Engines: Progress and Prospects
,”
Renewable. Sustainable. Energy. Rev.
,
38
(
1–2
), pp.
561
571
.
5.
Battin-Leclerc
,
F.
,
Blurock
,
E.
,
Bounaceur
,
R.
,
Fournet
,
R.
,
Glaude
,
P.-A.
,
Herbinet
,
O.
,
Sirjean
,
B.
, and
Warth
,
V.
,
2011
, “
Towards Cleaner Combustion Engines Through Groundbreaking Detailed Chemical Kinetic Models
,”
Chem. Soc. Rev.
,
40
(
9
), pp.
4762
4782
.
6.
Schifter
,
I.
,
González
,
U.
,
Díaz
,
L.
,
Sánchez-Reyna
,
G.
,
Mejía-Centeno
,
I.
, and
González-Macías
,
C.
,
2017
, “
Comparison of Performance and Emissions for Gasoline-Oxygenated Blends Up to 20 Percent Oxygen and Implications for Combustion on a Spark-Ignited Engine
,”
Fuel
,
208
(
15
), pp.
673
681
.
7.
Reitz
,
R. D.
,
2013
, “
Directions in Internal Combustion Engine Research
,”
Combust. Flame.
,
160
(
1
), pp.
1
8
.
8.
Awad
,
O. I.
,
Mamat
,
R.
,
Ali
,
O. M.
,
Sidik
,
N. A.
,
Yusaf
,
T.
,
Kadirgama
,
K.
, and
Kettner
,
M.
,
2018
, “
Alcohol and Ether As Alternative Fuels in Spark Ignition Engine: A Review
,”
Renewable. Sustainable. Energy. Rev.
,
82
(
Part 3
), pp.
2586
2605
.
9.
Schifter
,
I.
,
González
,
U.
, and
González-Macías
,
C.
,
2016
, “
Effects of Ethanol, Ethyl-Tert-Butyl Ether and Dimethyl-Carbonate Blends With Gasoline on SI Engine
,”
Fuel
,
183
(
3
), pp.
253
261
.
10.
Awad
,
O. I.
,
Mamat
,
R.
,
Ibrahim
,
T. K.
,
Hammid
,
A. T.
,
Yusri
,
I. M.
,
Hamidi
,
M. A.
,
Humada
,
A. M.
, and
Yusop
,
A. F.
,
2018
, “
Overview of the Oxygenated Fuels in Spark Ignition Engine: Environmental and Performance
,”
Renewable. Sustainable. Energy. Rev.
,
91
(
Supplement 1
), pp.
394
408
.
11.
Schifter
,
I.
,
Diaz
,
L.
,
Rodríguez
,
R.
,
Gómez
,
J.
, and
Gónzalez
,
U.
,
2011
, “
Combustion and Emissions Behavior for Ethanol-Gasoline Blends in a Single Cylinder Engine
,”
Fuel
,
90
(
12
), pp.
3586
3592
.
12.
Alzueta
,
M. U.
,
Salinas
,
P.
, and
Abián
,
M.
,
2015
, “
A Study of Dimethyl Carbonate Conversion and Its Impact to Minimize Soot and NO Emissions
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3985
3993
.
13.
Kohse-Höinghaus
,
K.
,
Osstwald
,
P.
,
Cool
,
T. A.
,
Kasper
,
T.
,
Hansen
,
N.
,
Qi
,
F.
,
Westbrook
,
C. K.
, et al.
2010
, “
Biofuel Combustion Chemistry: From Ethanol to Biodiesel
,”
Angew. Chem. - Int. Ed.
,
49
(
21
), pp.
3572
3597
.
14.
Bin Wen
,
L.
,
Xin
,
C. Y.
, and
Yang
,
S. C.
,
2010
, “
The Effect of Adding Dimethyl Carbonate (DMC) and Ethanol to Unleaded Gasoline on Exhaust Emission
,”
Appl. Energy.
,
87
(
1
), pp.
115
121
.
15.
U.S. Environmental Protection Agency
,
2018
.
Gasoline standards
.
16.
European Parliament
,
2016
.
Directive 2009/30/ec
.
17.
Ministerio de Ambiente Vivienda y Desarrollo Territorial, and Ministerio de Minas y Energía
,
2006
.
Resolución 1180 de 2006
.
18.
Andrae
,
J. C. G.
, and
Head
,
R. A.
,
2009
, “
HCCI Experiments with Gasoline Surrogate Fuels Modeled by a Semidetailed Chemical Kinetic Model
,”
Combust. Flame.
,
156
(
4
), pp.
842
851
.
19.
Iliev
,
S.
,
2015
, “
A Comparison of Ethanol and Methanol Blending With Gasoline Using a 1-D Engine Model
,”
Procedia. Eng.
,
100
, pp.
1013
1022
.
20.
Barraza-Botet
,
C. L.
, and
Wooldridge
,
M. S.
,
2018
, “
Combustion Chemistry of Iso-Octane/Ethanol Blends: Effects on Ignition and Reaction Pathways
,”
Combust. Flame.
,
188
, pp.
324
336
.
21.
Abdalla
,
A.
, and
Liu
,
D.
,
2018
, “
Dimethyl Carbonate As a Promising Oxygenated Fuel for Combustion: A Review
,”
Energies
,
11
(
6
), p.
1552
.
22.
Glaude
,
P. A.
,
Pitz
,
W. J.
, and
Thomson
,
M. J.
,
2005
, “
Chemical Kinetic Modeling of Dimethyl Carbonate in An Opposed-Flow Diffusion Flame
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1111
1118
.
23.
Chan
,
J. H.
,
Tsolakis
,
A.
,
Herreros
,
J. M.
,
Kallis
,
K. X.
,
Hergueta
,
C.
,
Sittichompoo
,
S.
, and
Bogarra
,
M.
,
2020
, “
Combustion, Gaseous Emissions and PM Characteristics of Di-Methyl Carbonate (DMC)-Gasoline Blend on Gasoline Direct Injection (GDI) Engine
,”
Fuel
,
263
(
1
), p.
116742
.
24.
Maier
,
T.
,
Härtl
,
M.
,
Jacob
,
E.
, and
Wachtmeister
,
G.
,
2019
, “
Dimethyl Carbonate (DMC) and Methyl Formate (MeFo): Emission Characteristics of Novel, Clean and Potentially CO2-neutral Fuels Including PMP and Sub-23 Nm Nanoparticle-emission Characteristics on a Spark-ignition DI-engine
,”
Fuel
,
256
(
3
), p.
115925
.
25.
Martins
,
J.
, and
Brito
,
F. P.
,
2020
, “
Alternative Fuels for Internal Combustion Engines
,”
Energies
,
13
(
16
), p.
4086
.
26.
Ohno
,
H.
,
Ikhlayel
,
M.
,
Tamura
,
M.
,
Nakao
,
K.
,
Suzuki
,
K.
,
Morita
,
K.
,
Kato
,
Y.
,
Tomishige
,
K.
, and
Fukushima
,
Y.
,
2021
, “
Direct Dimethyl Carbonate Synthesis From CO2 and Methanol Catalyzed by CeO2 and Assisted by 2-cyanopyridine: a Cradle-to-Gate Greenhouse Gas Emission Study
,”
Green Chem.
,
23
(
1
), pp.
457
469
.
27.
Saada
,
R.
,
AboElazayem
,
O.
,
Kellici
,
S.
,
Heil
,
T.
,
Morgan
,
D.
,
Lampronti
,
G. I.
, and
Saha
,
B.
,
2018
, “
Greener Synthesis of Dimethyl Carbonate Using a Novel Tin-Zirconia/Graphene Nanocomposite Catalyst
,”
Appl. Catal., B.
,
226
, pp.
451
462
.
28.
Tamboli
,
A. H.
,
Chaugule
,
A. A.
, and
Kim
,
H.
,
2017
, “
Catalytic Developments in the Direct Dimethyl Carbonate Synthesis From Carbon Dioxide and Methanol
,”
Chem. Eng. J.
,
323
, pp.
530
544
.
29.
Pyo
,
S. H.
,
Park
,
J. H.
,
Chang
,
T. S.
, and
Hatti-Kaul
,
R.
,
2017
, “
Dimethyl Carbonate As a Green Chemical
,”
Curr. Opin. Green and Sustainable Chem.y
,
5
, pp.
61
66
.
30.
Zhang
,
Y. Z.
,
Kung
,
E. H.
, and
Haworth
,
D. C.
,
2005
, “
A PDF Method for Multidimensional Modeling of HCCI Engine Combustion: Effects of Turbulence/chemistry Interactions on Ignition Timing and Emissions
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2763
2771
.
31.
Cheung
,
C.
,
Zhu
,
R.
, and
Huang
,
Z.
,
2011
, “
Investigation on the Gaseous and Particulate Emissions of a Compression Ignition Engine Fueled With Diesel-Dimethyl Carbonate Blends
,”
Sci. Total. Environ.
,
409
(
3
), pp.
523
529
.
32.
Mei
,
D.
,
Yue
,
S.
,
Zhao
,
X.
,
Hielscher
,
K.
, and
Baar
,
R.
,
2017
, “
Effects of Center of Heat Release on Combustion and Emissions in a PCCI Diesel Engine Fuelled by DMC-Diesel Blend
,”
Appl. Therm. Eng.
,
114
(
5
), pp.
969
976
.
33.
Polo Córdoba
,
A. D.
,
2016
, “
Evaluación De La Cinética De Oxidación Del Dietil Carbonato Y Su Comportamiento Como Aditivo Oxigenante En Motores De Combustión Interna
,”
Ph.D. thesis
,
Universidad de Antioquia
,
Medellín, Colombia
.
34.
Gopinath
,
D.
, and
Sundaram
,
E.
,
2012
, “
Experimental Investigation on the Effect of Adding Di Methyl Carbonate to Gasoline in a SI Engine Performance
,”
Int. J. Sci. Eng. Res.
,
3
(
6
), pp.
1
5
.
35.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
J. Energy Resourc. Technol., Trans. ASME
,
140
(
10
), p.
102205
.
36.
Falfari
,
S.
,
Brusiani
,
F.
, and
Pelloni
,
P.
,
2014
, “
3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on the Tumble Motion and the Mean Turbulent Intensity Distribution
,”
Energy Procedia
,
45
, pp.
701
710
.
37.
Forte
,
C.
,
Bianchi
,
G. M.
,
Corti
,
E.
,
Fantoni
,
S.
, and
Costa
,
M.
,
2014
, “
CFD Methodology for the Evaluation of Knock of a PFI Twin Spark Engine
,”
Energy Procedia
,
45
(
8
), pp.
859
868
.
38.
Boccardi
,
S.
,
Catapano
,
F.
,
Costa
,
M.
,
Sementa
,
P.
,
Sorge
,
U.
, and
Vaglieco
,
B.
,
2016
, “
Optimization of a GDI Engine Operation in the Absence of Knocking Through Numerical 1D and 3D Modeling
,”
Adv. Eng. Softw.
,
95
(
12
), pp.
38
50
.
39.
Battistoni
,
M.
,
Mariani
,
F.
,
Risi
,
F.
, and
Poggiani
,
C.
,
2015
, “
Combustion CFD Modeling of a Spark Ignited Optical Access Engine Fueled With Gasoline and Ethanol
,”
Energy Procedia
,
82
, pp.
424
431
.
40.
Kosmadakis
,
G.
,
Rakopoulos
,
D.
,
Arroyo
,
J.
,
Moreno
,
F.
,
Muñoz
,
M.
, and
Rakopoulos
,
C.
,
2018
, “
CFD-Based Method With An Improved Ignition Model for Estimating Cyclic Variability in a Spark-Ignition Engine Fueled With Methane
,”
Energy. Convers. Manage.
,
174
, pp.
769
778
.
41.
Baratta
,
M.
,
Misul
,
D.
,
Viglione
,
L.
, and
Xu
,
J.
,
2019
, “
Combustion Chamber Design for a High-Performance Natural Gas Engine: CFD Modeling and Experimental Investigation
,”
Energy. Convers. Manage.
,
192
(
8–?9
), pp.
221
231
.
42.
Pal
,
P.
,
Kolodziej
,
C. P.
,
Choi
,
S.
,
Som
,
S.
,
Broatch
,
A.
,
Gómez-Soriano
,
J.
,
Wu
,
Y.
,
Lu
,
T.
, and
See
,
Y. C.
,
2018
, “
Development of a Virtual CFR Engine Model for Knocking Combustion Analysis
,”
SAE Int. J. Engines
,
11
(
6
), pp.
1069
1082
.
43.
Probst
,
D.
,
Wijeyakulasuriya
,
S.
,
Pal
,
P.
,
Kolodziej
,
C.
, and
Pomraning
,
E.
,
2021
, “
Accelerating Computational Fluid Dynamics Simulations of Engine Knock Using a Concurrent Cycles Approach
,”
Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical Conference
,
Denver, CO
,
October
, pp.
1
8
.
44.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2017
, “
Multi-Dimensional CFD Simulations of Knocking Combustion in a CFR Engine
,”
Proceedings of the ASME 2017 Internal Combustion Division Fall Technical Conference
,
Seattle, WA
.
45.
Kalvakala
,
K.
,
Pal
,
P.
,
Wu
,
Y.
,
Kukkadapu
,
G.
,
Kolodziej
,
C.
,
Gónzalez
,
J. P.
,
Waqas
,
M. U.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Analysis of Fuel Effects on Advanced Compression Ignition Using a Cooperative Fuel Research Engine Computational Fluid Dynamics Model
,”
ASME J. Energy. Resour. Technol.
,
143
(
10
), p.
102304
.
46.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
,
McNenly
,
M.
,
Lapointe
,
S.
,
Whitesides
,
R.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2020
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-ignition Conditions
,”
ASME J. Energy. Resour. Technol.
,
143
(
3
), p.
032305
.
47.
Kosmadakis
,
G. M.
,
Rakopoulos
,
D. C.
, and
Rakopoulos
,
C. D.
,
2016
, “
Methane/hydrogen Fueling a Spark-ignition Engine for Studying NO, CO and HC Emissions With a Research CFD Code
,”
Fuel
,
185
(
3
), pp.
903
915
.
48.
Iliev
,
S. P.
,
2015
, “
Developing of A 1-D Combustion Model and Study of Engine Performance and Exhaust Emission Using Ethanol-Gasoline Blends
,”
Transactions on Engineering Technologies: World Congress on Engineering 2014
,
London, UK
, pp.
85
98
.
49.
Mora
,
D. O.
, and
Mantilla
,
J. M.
,
2017
, “
Estudio Del Proceso De Combustión En Un Motor De Alto Swirl Empleando Mecánica De Fluidos Computacional
,”
Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria
,
33
(
3–4
), pp.
212
224
.
50.
Puckett
,
A. D.
, eds.
1955
,
ASTM Manual of Engine Test Methods for Rating Fuels
, 2nd ed.
American Society for Testing Materials
,
Baltimore, USA
.
51.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
,
CONVERGE 2.4 Manual.
Convergent Science, Inc
.,
Madison, WI
.
52.
Agudelo Santamaría
,
A. F.
,
Agudelo Santamaría
,
J. R.
, and
Benjumea Hernández
,
P. N.
,
2007
,
Diagnóstico De La Combustión De Biocombustibles En Motores
, 1st ed.
Imprenta Universidad de Antioquia
,
Medellín
.
53.
O’Rourke
,
P.
, and
Amsden
,
A. A.
,
1996
, “
A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines
,”
1996 SAE International Fall Fuels and Lubricants Meeting and Exhibition
,
San Antonio, TX
.
54.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for The KIVA-3 Wall Film Model
,”
SAE 2000 World Congress
,
Detroit, MI
.
55.
Converge Science
,
2018
.
Converge CFD Software User Resources
.
56.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2016
,
CONVERGE Studio 2.3 Manual.
Convergent Science, Inc
.,
Madison, WI
.
57.
Domínguez-Cardozo
,
S.
,
2020
, “
Kinetic and Fluid-Dynamic Modeling of CFR Engine Fueled by Oxygenated Gasoline
,”
Master’s thesis
,
Universidad de Antioquia
,
Medellín, Colombia
58.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
, 2nd ed.
McGraw-Hill
,
New York
.
59.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
,
SAE Technical Papers.
760129
.
60.
Nagle
,
J.
, and
Strickland-Constable
,
R.
,
1962
, “
Oxidation of Carbon Between 1000–2000 C
,”
In Proceedings of the Fifth Carbon Conference
,
Philadelphia, PA
.
61.
Tecplot Inc
.
TECPLOT.
62.
Boot
,
M. D.
,
Tian
,
M.
,
Hensen
,
E. J.
, and
Mani Sarathy
,
S.
,
2017
, “
Impact of Fuel Molecular Structure on Auto-ignition Behavior - Design Rules for Future High Performance Gasolines
,”
Prog. Energy. Combust. Sci.
,
60
(
6
), pp.
1
25
.
63.
Wang
,
Q.
,
Sun
,
W.
,
Guo
,
L.
,
Lin
,
S.
,
Cheng
,
P.
,
Zhang
,
H.
, and
Yan
,
Y.
,
2021
, “
Experimental and Kinetic Study on the Laminar Burning Speed, Markstein Length and Cellular Instability of Oxygenated Fuels
,”
Fuel
,
297
(
6
), p.
120754
.
64.
Kannan
,
B.
, and
Srivathsan
,
P.
,
2016
, “
Numerical Simulation of Spark Ignition Engine Using OpenFOAM®
,”
Perspect. Sci.
,
8
, pp.
13
15
.
65.
Scala
,
F.
,
Galloni
,
E.
, and
Fontana
,
G.
,
2016
, “
Numerical Analysis of a Downsized Spark-Ignition Engine Fueled by Butanol/Gasoline Blends At Part-Load Operation
,”
Appl. Therm. Eng.
,
102
(
2
), pp.
383
390
.
66.
Sarathy
,
S. M.
,
Oßwald
,
P.
,
Hansen
,
N.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Alcohol Combustion Chemistry
,”
Prog. Energy. Combust. Sci.
,
44
, pp.
40
102
.
67.
Shahad
,
H. A.
, and
Wabdan
,
S. K.
,
2015
, “
Effect of Operating Conditions on Pollutants Concentration Emitted From a Spark Ignition Engine Fueled With Gasoline Bioethanol Blends
,”
J. Renewable Energy
,
2015
(
4
), p.
170896
.
68.
Zervas
,
E.
,
Montagne
,
X.
, and
Lahaye
,
J.
,
2003
, “
Emissions of Regulated Pollutants From a Spark Ignition Engine. Influence of Fuel and Air/Fuel Equivalence Ratio
,”
Environ. Sci. Technol.
,
37
(
14
), pp.
3232
3238
.
69.
Sebayang
,
A.
,
Masjuki
,
H.
,
Ong
,
H. C.
,
Dharma
,
S.
,
Silitonga
,
A.
,
Kusumo
,
F.
, and
Milano
,
J.
,
2017
, “
Prediction of Engine Performance and Emissions With Manihot Glaziovii Bioethanol - Gasoline Blended Using Extreme Learning Machine
,”
Fuel
,
210
(
7
), pp.
914
921
.
70.
He
,
L.
,
Hu
,
J.
,
Zhang
,
S.
,
Wu
,
Y.
,
Zhu
,
R.
,
Zu
,
L.
,
Bao
,
X.
,
Lai
,
Y.
, and
Su
,
S.
,
2018
, “
The Impact From the Direct Injection and Multi-Port Fuel Injection Technologies for Gasoline Vehicles on Solid Particle Number and Black Carbon Emissions
,”
Appl. Energy.
,
226
, pp.
819
826
.
71.
Kontses
,
A.
,
Triantafyllopoulos
,
G.
,
Ntziachristos
,
L.
, and
Samaras
,
Z.
,
2020
, “
Particle Number (PN) Emissions From Gasoline, Diesel, LPG, CNG and Hybrid-Electric Light-Duty Vehicles Under Real-World Driving Conditions
,”
Atmos. Environ.
,
222
, p.
117126
.
72.
Frenzel
,
I.
,
Krause
,
H.
, and
Trimis
,
D.
,
2017
, “
Study on the Influence of Ethanol and Butanol Addition on Soot Formation in Iso-Octane Flames
,”
Energy Procedia
,
120
, pp.
721
728
.
73.
Tan
,
Y. R.
,
Botero
,
M. L.
,
Sheng
,
Y.
,
Dreyer
,
J. A.
,
Xu
,
R.
,
Yang
,
W.
, and
Kraft
,
M.
,
2018
, “
Sooting Characteristics of Polyoxymethylene Dimethyl Ether Blends With Diesel in a Diffusion Flame
,”
Fuel
,
224
(
6065
), pp.
499
506
.
74.
Khosousi
,
A.
,
Liu
,
F.
,
Dworkin
,
S. B.
,
Eaves
,
N. A.
,
Thomson
,
M. J.
,
He
,
X.
,
Dai
,
Y.
,
Gao
,
Y.
,
Liu
,
F.
,
Shuai
,
S.
, and
Wang
,
J.
,
2015
, “
Experimental and Numerical Study of Soot Formation in Laminar Coflow Diffusion Flames of Gasoline/Ethanol Blends
,”
Combust. Flame.
,
162
(
10
), pp.
3925
3933
.
75.
Bergthorson
,
J. M.
, and
Thomson
,
M. J.
,
2015
, “
A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines
,”
Renewable. Sustainable. Energy. Rev.
,
42
(
1
), pp.
1393
1417
.
You do not currently have access to this content.