Abstract

Rock-fluid interactions in shale formations are one of the main sources of wellbore instability issues and inadequate stimulation performance. For better planning of fracturing operations and optimizing production from these reservoirs, it is important to understand the mechanisms behind these interactions. These issues are especially prevalent in clay-rich shales, such as Tuscaloosa Marine Shale, which is the subject of this study. Conventional techniques to quantify these shale-fluid interactions comprise of measuring swelling in powdered rock grains or measurement of deformation in the whole pieces of the core using a linear variable differential transformer and strain gages. However, the contribution from individual laminae to overall deformation cannot be evaluated using these methods. In this study, we developed an experimental setup to evaluate the spatial deformation in shale during interaction with water using digital image correlation (DIC). Deformation of two shale samples, with 34 wt% to 51 wt% clay content, was studied. White paint was used to generate a random speckle pattern on the specimen and then immersed in deionized water. The deformation process was captured using a digital camera and images were analyzed using DIC to quantify the deformation. The implementation of the DIC technique enables the visualization and quantification of spatial deformation in the specimen during interacting with water. The results show the localization of large strains in select laminations. The results provide a better understanding of shale deformation when interacting with water in comparison to traditional measurements that can provide only an average strain value.

References

1.
Mitchell
,
J. K.
, and
Soga
,
K.
,
2005
,
Fundamentals of Soil Behavior
, 3rd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
2.
Anderson
,
R. L.
,
Ratcliffe
,
I.
,
Greenwell
,
H. C.
,
Williams
,
P. A.
,
Cliffe
,
S.
, and
Coveney
,
P. V.
,
2010
, “
Clay Swelling—A Challenge in the Oilfield
,”
Earth-Sci. Rev.
,
98
(
3–4
), pp.
201
216
.
3.
Haddad
,
M.
,
Sanaei
,
A.
, and
Sepehrnoori
,
K.
,
2017
, “
Hydraulic Fracturing Fluid Effect on Clay Swelling in Stimulated Naturally Fractured Reservoirs
,”
Unconventional Resources Technology Conference
,
Austin, TX
,
24–26 July
,
Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers
, pp.
3583
3597
.
4.
Lazar
,
O. R.
,
Bohacs
,
K. M.
,
Macquaker
,
J. H. S.
,
Schieber
,
J.
, and
Demko
,
T. M.
,
2015
, “
Capturing Key Attributes of Fine-Grained Sedimentary Rocks In Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines
,”
J. Sediment. Res.
,
85
(
3
), pp.
230
246
.
5.
Borrok
,
D. M.
,
Yang
,
W.
,
Wei
,
M.
, and
Mokhtari
,
M.
,
2019
, “
Heterogeneity of the Mineralogy and Organic Content of the Tuscaloosa Marine Shale
,”
Mar. Pet. Geol.
,
109
, pp.
717
731
.
6.
Hao
,
Z.
,
Bechtel
,
H. A.
,
Kneafsey
,
T.
,
Gilbert
,
B.
, and
Nico
,
P. S.
,
2018
, “
Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks
,”
Sci. Rep.
,
8
(
1
), p.
2552
.
7.
Ghanbari
,
E.
, and
Dehghanpour
,
H.
,
2015
, “
Impact of Rock Fabric on Water Imbibition and Salt Diffusion in Gas Shales
,”
Int. J. Coal Geol.
,
138
, pp.
55
67
.
8.
Minardi
,
A.
,
Crisci
,
E.
,
Ferrari
,
A.
, and
Laloui
,
L.
,
2016
, “
Anisotropic Volumetric Behaviour of Opalinus Clay Shale upon Suction Variation
,”
Geotechnique Lett.
,
6
(
2
), pp.
144
148
.
9.
Lyu
,
Q.
,
Long
,
X.
,
Ranjith
,
P. G.
,
Tan
,
J.
, and
Kang
,
Y.
,
2018
, “
Experimental Investigation on the Mechanical Behaviours of a Low-Clay Shale Under Water-Based Fluids
,”
Eng. Geol.
,
233
, pp.
124
138
.
10.
Xu
,
M.
,
Gupta
,
A.
, and
Dehghanpour
,
H.
,
2019
, “
How Significant Are Strain and Stress Induced by Water Imbibition in Dry Gas Shales?
,”
J. Pet. Sci. Eng.
,
176
, pp.
428
443
.
11.
Aftab
,
A.
,
Ismail
,
A. R.
, and
Ibupoto
,
Z. H.
,
2017
, “
Enhancing the Rheological Properties and Shale Inhibition Behavior of Water-Based Mud Using Nanosilica, Multi-Walled Carbon Nanotube, and Graphene Nanoplatelet
,”
Egypt. J. Pet.
,
26
(
2
), pp.
291
299
.
12.
Quainoo
,
A. K.
,
Negash
,
B. M.
,
Bavoh
,
C. B.
, and
Idris
,
A.
,
2021
, “
Natural Amino Acids as Potential Swelling and Dispersion Inhibitors for Montmorillonite-Rich Shale Formations
,”
J. Pet. Sci. Eng.
,
196
, p.
107664
.
13.
Wang
,
G.
,
Du
,
H.
, and
Jiang
,
S.
,
2019
, “
Synergistic Inhibition Effect of Organic Salt and Polyamine on Water-Sensitive Shale Swelling and Dispersion
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082901
.
14.
Ahmad
,
H. M.
,
Kamal
,
M. S.
,
Mahmoud
,
M.
,
Shakil Hussain
,
S. M.
,
Abouelresh
,
M.
, and
Al-Harthi
,
M. A.
,
2019
, “
Organophilic Clay-Based Drilling Fluids for Mitigation of Unconventional Shale Reservoirs Instability and Formation Damage
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
093102
.
15.
Konate
,
N.
,
Magzoub
,
M.
,
Salehi
,
S.
,
Ghalambor
,
A.
, and
Mokhtari
,
M.
,
2020
,
Laboratory Evaluation of Mud Systems for Drilling High Clay Shales in Dynamic Conditions: Comparison of Inhibitive Systems
,
OnePetro
.
16.
Carrier
,
B.
,
Wang
,
L.
,
Vandamme
,
M.
,
Pellenq
,
R. J.-M.
,
Bornert
,
M.
,
Tanguy
,
A.
, and
Van Damme
,
H.
,
2013
, “
ESEM Study of the Humidity-Induced Swelling of Clay Film
,”
Langmuir
,
29
(
41
), pp.
12823
12833
.
17.
Wang
,
L. L.
,
Zhang
,
G. Q.
,
Hallais
,
S.
,
Tanguy
,
A.
, and
Yang
,
D. S.
,
2017
, “
Swelling of Shales: A Multiscale Experimental Investigation
,”
Energy Fuels
,
31
(
10
), pp.
10442
10451
.
18.
Wang
,
L. L.
,
Bornert
,
M.
,
Chanchole
,
S.
,
Yang
,
D. S.
,
Héripre
,
E.
,
Tanguy
,
A.
, and
Caldemaison
,
D.
,
2013
, “
Micro-Scale Experimental Investigation of the Swelling Anisotropy of the Callovo-Oxfordian Argillaceous Rock
,”
Clay Miner.
,
48
(
2
), pp.
391
402
.
19.
Wang
,
L. L.
,
Bornert
,
M.
,
Héripré
,
E.
,
Yang
,
D. S.
, and
Chanchole
,
S.
,
2014
, “
Irreversible Deformation and Damage in Argillaceous Rocks Induced by Wetting/Drying
,”
J. Appl. Geophys.
,
107
, pp.
108
118
.
20.
Wang
,
L. L.
,
Bornert
,
M.
,
Yang
,
D. S.
,
Héripré
,
E.
,
Chanchole
,
S.
,
Halphen
,
B.
,
Pouya
,
A.
, and
Caldemaison
,
D.
,
2015
, “
Microstructural Insight Into the Nonlinear Swelling of Argillaceous Rocks
,”
Eng. Geol.
,
193
, pp.
435
444
.
21.
Fouché
,
O.
,
Wright
,
H.
,
Le Cléac’h
,
J.-M.
, and
Pellenard
,
P.
,
2004
, “
Fabric Control on Strain and Rupture of Heterogeneous Shale Samples by Using a Non-Conventional Mechanical Test
,”
Appl. Clay Sci.
,
26
(
1
), pp.
367
387
.
22.
Bornert
,
M.
,
Valès
,
F.
,
Gharbi
,
H.
, and
Minh
,
D. N.
,
2010
, “
Multiscale Full-Field Strain Measurements for Micromechanical Investigations of the Hydromechanical Behaviour of Clayey Rocks
,”
Strain
,
46
(
1
), pp.
33
46
.
23.
Yang
,
D.
,
Bornert
,
M.
,
Chanchole
,
S.
,
Wang
,
L.
,
Valli
,
P.
, and
Gatmiri
,
B.
,
2011
, “
Experimental Investigation of the Delayed Behavior of Unsaturated Argillaceous Rocks by Means of Digital Image Correlation Techniques
,”
Appl. Clay Sci.
,
54
(
1
), pp.
53
62
.
24.
Yang
,
D. S.
,
Bornert
,
M.
,
Chanchole
,
S.
,
Gharbi
,
H.
,
Valli
,
P.
, and
Gatmiri
,
B.
,
2012
, “
Dependence of Elastic Properties of Argillaceous Rocks on Moisture Content Investigated with Optical Full-Field Strain Measurement Techniques
,”
Int. J. Rock Mech. Min. Sci.
,
53
, pp.
45
55
.
25.
Mokhtari
,
M.
,
Nath
,
F.
,
Hayatdavoudi
,
A.
,
Nizamutdinov
,
R.
,
Jiang
,
S.
, and
Rizvi
,
H.
,
2019
, “
Complex Deformation of Naturally Fractured Rocks
,”
J. Pet. Sci. Eng.
,
183
, p.
106410
.
26.
Hedan
,
S.
,
Cosenza
,
P.
,
Valle
,
V.
,
Dudoignon
,
P.
,
Fauchille
,
A.-L.
, and
Cabrera
,
J.
,
2012
, “
Investigation of the Damage Induced by Desiccation and Heating of Tournemire Argillite Using Digital Image Correlation
,”
Int. J. Rock Mech. Min. Sci.
,
51
, pp.
64
75
.
27.
Hedan
,
S.
,
Fauchille
,
A.-L.
,
Valle
,
V.
,
Cabrera
,
J.
, and
Cosenza
,
P.
,
2014
, “
One-Year Monitoring of Desiccation Cracks in Tournemire Argillite Using Digital Image Correlation
,”
Int. J. Rock Mech. Min. Sci.
,
68
, pp.
22
35
.
28.
Kimanzi
,
R.
,
Wu
,
Y.
,
Salehi
,
S.
,
Mokhtari
,
M.
, and
Khalifeh
,
M.
,
2020
, “
Experimental Evaluation of Geopolymer, Nano-Modified, and Neat Class H Cement by Using Diametrically Compressive Tests
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
092101
.
29.
Chu
,
T. C.
,
Ranson
,
W. F.
, and
Sutton
,
M. A.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.
30.
Saidzade
,
A.
,
Liu
,
N.
,
Mokhtari
,
M.
,
Parrikar
,
P. N.
, and
Wortman
,
P. B.
,
2020
, “
Spontaneous Imbibition in Shales Under One-End-Open Boundary Condition: Effect of Wettability, Porosity, and Bedding Orientation
,”
Unconventional Resources Technology Conference
,
Online
,
July 20–22
.
31.
Chuprin
,
M.
,
Chavez
,
N.
,
Nath
,
F.
, and
Mokhtari
,
M.
,
2020
, “
Evaluation of Tuscaloosa Marine Shale Stability Using Capillary Suction Time and Roller Oven Tests
,”
Unconventional Resources Technology Conference
,
Online
,
20-22 July
.
32.
Minardi
,
A.
,
Ferrari
,
A.
,
Ewy
,
R.
, and
Laloui
,
L.
,
2018
, “
The Impact of the Volumetric Swelling Behavior on the Water Uptake of Gas Shale
,”
J. Nat. Gas Sci. Eng.
,
49
, pp.
132
144
.
33.
Zhang
,
S.
, and
Sheng
,
J. J.
,
2018
, “
Effect of Water Imbibition on Fracture Generation in Mancos Shale Under Isotropic and Anisotropic Stress Conditions
,”
J. Geotech. Geoenviron. Eng.
,
144
(
2
), p.
04017113
.
You do not currently have access to this content.